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1 | Introduction
This document is the final report of the semester project entitled "Gestion de la mémoire
RAM dans les conteneurs", carried out as part of a semester 6 project at the Haute
Ecole d’Ingénierie et d’Architecture of Fribourg. This work was produced by Martin
Roch-Neirey.

1.1 Context
Modern computer architectures are composed of various complex components that
work in conjunction to deliver performance. One of these essential components, the
Random Access Memory (RAM), ensures that the computer can efficiently access and
manipulate data, providing the necessary speed and flexibility to execute tasks and
process information in real time.

On the other hand, applications are becoming increasingly containerized, a trend driven
by the demand for more scalable, portable, and resource-efficient application deployment.
This shift raises important questions about the optimization of resources, particularly in
how RAM is managed to maintain efficient performance and isolation between workloads.
While containerization offers significant advantages in terms of scalability and resource
management, it also introduces complexities in RAM utilization. Containers share the
host operating system’s kernel but operate in isolated user spaces, leading to unique
challenges in memory allocation and management.

Therefore, efficient RAM management is essential to ensure that each container has
sufficient memory to perform optimally without encroaching on the memory required by
other containers on the same host. This balance is critical in preventing performance
bottlenecks and ensuring that system resources are utilized effectively, thus enabling
high performance across all deployed workloads.

This project aims to address numerous questions regarding how RAM is managed in
containerized environments, focusing specifically on Docker native environments and
Kubernetes clusters.
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Chapter 1. Introduction

1.2 Objectives
This project aims to study and understand how both the Docker Engine and Kubernetes
handles Random Access Memory management of their workloads, and how the work-
loads see the context imposed on them, with their RAM usage and the limit they must
not exceed. The scope of the project is quite large, with a focus on the allocation,
limitations, and monitoring topics. As this is considered an academic project, it should
give answers (or partial answers) to many of the questions and hypotheses written
below. The following objectives reflect these questions and hypotheses.

Each of the following goals concerns both the Docker Engine and Kubernetes. The
main goals of this project are:

• Study the aspect of RAM memory in containers/pods in general.

• Understanding how RAM limits are imposed on containers/pods.

• Answer the following questions:

– How can you strictly limit the memory resources of a container/pod to
ensure that there are no overflows? What happens when this limit is reached
and then eventually exceeded?

– Is it possible for a container to query the Docker daemon to obtain informa-
tion about memory? Same question from outside the container.

– As far as security is concerned, is it possible to prevent a container from
seeing the memory it uses? Same question from outside the container.

– How do the Docker engine and Kubernetes behave when there are too many
instances running (or being deployed) compared to the allocatable resources?

These questions will be answered using different tools, like Docker, Kubernetes, and
monitoring solutions. In addition to these key objectives, there are two secondary
objectives:

• Study and list the various "containers as a service" solutions, explaining the
aspects of RAM-based billing and how suppliers manage RAM quotas and potential
overruns.

• Replicate this study on other containerisation engines (podman, containerd, rkt,
etc.) and compare the results.
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1.3 Structure and information about this report

1.3 Structure and information about this report
This report is organized in 6 chapters, from the introduction to the conclusion:

1. The chapter 2 invites the reader to discover different information on RAM, and
how engines like Docker and Kubernetes manages their workloads, limit their
RAM usage... This chapter also contains the presentation of different tools used
in this project to build the infrastructure and monitor the results. The end of
Chapter 2 looks at how public cloud providers manage RAM and charge users for
it.

2. Next, the chapter 3 shows the design of the application developed to allocate
and deallocate RAM, and the infrastructure deployed to execute the experiments.

3. The chapter 4 explains how the application has been developed and how the
infrastructure has been deployed.

4. The penultimate chapter shows the testing strategies and procedures, and the
results associated to each one. It also presents some ideas for experiments that
were not carried out as part of this project.

5. Finally, chapter 6 presents the overall conclusion of the project.

At the beginning of each chapter, its structure is explained. Some of the technical
vocabulary is explained in the glossary at the end of this document. Each word inserted
in the glossary is underlined the first time it appears in the document.

Scope of the study

This study focuses solely on the behaviour of the Docker engine and Kubernetes
when run on Linux environments. All the machines used in this project to run the
workloads are running Ubuntu 20.04 LTS.

This report assumes that the reader already has some knowledge about virtualisation,
containerisation, Linux kernel, processes, Docker, Kubernetes and RAM in general.

This report was written by hand with partial assistance from DeepL and ChatGPT
(GPT-4 and GPT-4o models). A declaration of honour made by the author is available
at the end of the conclusion chapter.
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2 | Analysis
This chapter describes the main elements used in this project, from a reminder of the
RAM principle to more in-depth explanations of Kubernetes and Docker. It is important
to understand from a theoretical point of view the behaviour of Docker and Kubernetes.
The testing procedures defined in the design section of this report may be based on
official information from both documentation, described as hypotheses that may be
verified during the tests. Each testing procedure contains an hypothesis, as described
in the chapter 5. Note that during the project, a short analysis has been made on a
solution called "parca.dev". This solution has not been implemented, so its analysis in
available in the Appendix C.
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2.1 General description of Random Access Memory

2.1 General description of Random Access Memory
Random Access Memory (RAM) is a fundamental component in all modern computing
systems, acting as a short-term data storage that a device’s processor can access directly
and rapidly. Unlike other storage devices such as hard drives, RAM is volatile, which
means it loses all stored information when the power is turned off. The term "random
access" refers to the ability of the system to access any memory cell directly if the row
and column that intersect at that cell are known. This direct access capability enables
high-speed data retrieval and storage, which is essential for the efficient performance
of modern applications and operating systems

The computer stores information in registers, each one identified by a unique address.
To store information, the computer select the address of the desired register, and
pushes data to it with specific pins. A control pin (often called "write control signal")
is used to read or write data to the selected register. Here is an example of a simple
8*4 bit RAM device.

Figure 2.1: Diagram of an 8*4 bit RAM device (Arith-Matic[1])

The address decoder converts a 3 bit binary address into 8 different registers. Each
register is then accessible using a single address. When the write control signal is
enabled, the data from above are pushed in the register selected by the address decoder.
When this signal is disabled, the data is read from the register, into the 4-bit data word.

A RAM strip can be up to 32GB in size, which enables modern computer to address
huge quantity of RAM when having multiple stripes. For example, high-performance
computers can have multiple terabytes of RAM to compute a lot of information quickly.
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Chapter 2. Analysis

2.1.1 Virtual and swap memory

It is possible for a modern computer to virtually extend it’s RAM size, by using a portion
of it’s hard drive usually used to store non-volatile information for longer duration.
When the computer’s RAM is almost full, it can move some information located in its
RAM on the hard drive to free some space. The information stored on the hard disk
can later be reinserted into RAM when one of the following two situations occurs::

1. The operating system needs to access it for any reason. It will then swap RAM
data with the hard drive data (this operation is called swapping).

2. The initial RAM space has once again free space. The virtual memory space
located on the hard drive is then no longer used.

An abusive usage of the virtual memory, or swapping mechanism can result in thrash-
ing[2], significantly degrading computer performance, as hard disks offer much lower
performance than RAM.

In addition to the extension capacity of the RAM using a hard drive, the virtual memory
is also a key principle seen from a process point of view. As written before, the "random
access" term means that the operating system is accessing a memory block using a
unique address. Each process executed on a computer has a given RAM block to store
and manipulate data, but this block may not be continuous for multiple reasons. For
example, as applications are opened, closed, and run over time, they request and release
memory. This frequent allocation and deallocation can lead to fragmentation, where
free memory is divided into separate blocks (sometimes distributed among multiple
processes) that are not physically contiguous.

Virtual memory allows a process to see a contiguous block of address space that is
actually composed of scattered fragments of physical memory or even disk space. This
is achieved through a process of memory management where the operating system
maintains a mapping table to translate virtual addresses to physical addresses. This
mechanism helps in efficiently using RAM and allows a computer to compensate for
physical memory shortages by temporarily transferring data to disk storage, as said
before.
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2.1 General description of Random Access Memory

Figure 2.2: Virtual memory combines active RAM and inactive memory on hard drive
to form a large range of contiguous addresses (Wikipedia[3])

Even if a portion of a process memory block is located on a hard drive and other portions
are distributed in the physical RAM, the process still only sees one memory block with
continuous addresses. The operating system is in charge of translating virtual addresses
to physical addresses.

2.1.2 RAM issues

One of the main problems with RAM occurs when there is not enough memory available.
This issue is called "Out of Memory Exception" (OOME), which occurs when a system
or an application tries to claim more RAM than is available or that the system can
allocate. This has been a big issue on computers without much RAM, such as IoT
devices, or old computers. The swap memory has given a partial answer to this problem,
but it is not viable to allocate a lot of memory on a hard drive because of the significantly
degrading performance. When an application fails to allocate some memory (for example
using the malloc() C function), several consequences and behaviors follow, dictated by
the program’s design and its error handling strategy. One of the biggest issue would be
a crash from the program.

When the operating system detects that it is running low on memory and is unable to
meet the RAM demands of all running processes, it may initiate the OOMKiller process.
It is designed to preserve system stability by forcibly terminating one or more processes
that are using a lot of memory. A stable system should never need to run OOMKiller,
as it is considered a last resort before the whole system crashes due to lack of memory.
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Chapter 2. Analysis

In certain situations, particularly in containerised environments, the OOMKiller may
be executed if an application exceeds the RAM limits imposed on it, even if there is
memory left on the system. This is a typical point around which this study revolves.

2.2 Docker RAM management
Docker has been the most popular containerisation engine for many years. Most Docker
users know how to use it, build images, deploy applications with Docker-Compose...
But it’s rare to see people really understand the inner workings of the engine. This
part of the analysis aims to explain some principles that Docker uses to manage its
containers and limit their RAM usage.

By default, a container is not limited in its resource usage and can utilize as much of a
resource as the host permits. Administrators must use methods provided by Docker to
manage the amount of memory (or CPU) that a container is allowed to use. It can
be easily done by setting runtime configuration options in the docker run command
(or in a Docker Compose file). The resources limits of a container are then set by the
kernel cgroups[4] (this is also true for Kubernetes). The official documentation itself
says that it is important to restrict the quantity of RAM a container can access:

"It’s important not to allow a running container to consume too much of
the host machine’s memory. On Linux hosts, if the kernel detects that there
isn’t enough memory to perform important system functions, it throws an
OOME, or Out Of Memory Exception, and starts killing processes to free
up memory. Any process is subject to killing, including Docker and other
important applications. This can effectively bring the entire system down if
the wrong process is killed."[5]

Note that to avoid the Docker daemon to be killed by the OOMKiller, it adjusts the
OOM priority1 of itself, so it has less probability to be killed.

To set a RAM limit to a container, the flag –memory=X is used, where X represents
the size of RAM allowed to be used by the container. It doesn’t mean that this
memory is reserved to it, it only means it can use up to X bytes of RAM. For example,
the command docker run –memory=1g hello-world creates a container based on the
hello-world image, that can use up to 1GB of RAM. If the container exceeds its limits,
it will be terminated, either by a SIGTERM signal or a SIGKILL signal (depending on
the CAP_SYS_RAWIO capability of the process).

The Docker engine also provides a flag when starting a container, which is –oom-
kill-disable. This flag ensures that the container cannot be killed by the OOMKiller,
which may be dangerous if the container takes too much RAM from the host. In such
case, the OOMKiller would have to start to kill host processes to free memory. This
would have been a great experiment case, as this is a project driven in a development
environment, but the virtual machines used in this project does not have this kernel

1The OOMKiller behaviour and the topic of OOM priority are described on the official kernel
documentation[6].
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2.3 Kubernetes RAM management

capability. When trying to execute a container with this flag, the following exception
was raised: "WARNING: Your kernel does not support OomKillDisable. OomKillDisable
discarded."

The full Docker documentation[7] provides other useful information about the configu-
ration of containers, including the swap memory capability.

2.3 Kubernetes RAM management
Kubernetes is a well-known and powerful workloads orchestrator, most of the time
using the containerd[8] engine (but not exclusively) to execute containers. The tool is
able to automate deploying, scaling and operating multiple containerized applications.

Figure 2.3: Kubernetes logo

By abstracting the hardware infrastructure layer, Kubernetes allows the deployment of
various workloads, from stateless to stateful applications, including databases. This
versatility, combined with a robust ecosystem, has led to widespread adoption in the IT
industry. A significant feature of Kubernetes is its ability to maintain the desired state
of applications. For example, if a container fails, Kubernetes can automatically replace
it, providing a form of self-healing crucial in production environments.

When the kubelet is launched on a node, it first analyses the node’s total capacity and
reserves part of the memory for its internal operation and that of the containerisation
engine. The rest of the memory is considered allocable to the pods.

Figure 2.4: Reservation of a RAM space for internal purposes
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Chapter 2. Analysis

In Kubernetes, it is possible to manage resources of pods using 2 definitions: the
requests, and limits. The request represents the amount of memory that Kubernetes
guarantees to the container. If a container requests a certain amount of memory,
Kubernetes tries to ensure that it always has at least that much memory available to it.
The limit represents the maximum amount of memory that a container is allowed to
use. If a container tries to use more memory than its limit, it can be terminated or
restarted by Kubernetes, depending on the restart policy set2. It is possible to define
both in 2 different places:

• In a deployment file, where the specifications will be applied only to this deploy-
ment.

• In a LimitRange configuration file that refers to a namespace, where the specifi-
cations will be applied by default to all deployments within this namespace. The
default values given by this configuration can still be override by configuring new
ones in a deployment file, or a pod configuration file.

Below are shown the 2 way to configure limits and requests, as explained above.

# Defining limits and requests using
a pod specifications file↪→

---
apiVersion: v1
kind: Pod
metadata:

name: ps6-pod
spec:

containers:
- name: ps6-container

image: ps6-image
resources:

requests:
memory: "256Mi" # Request

256 MB of memory↪→
limits:
memory: "512Mi" # Limit to

512 MB of memory↪→

# Defining limits and requests using
a LimitRange configuration
applied to the "ps6" namespace

↪→
↪→
---
apiVersion: v1
kind: LimitRange
metadata:
name: ps6

spec:
limits:
- default:

memory: 512Mi # Limit to 512
MB of memory↪→

defaultRequest:
memory: 256Mi # Request 256 MB

of memory↪→
type: Container

A pod can access to the values of these fields using the Downward API[9]. Note that
this API does not allow the pod to modify it’s requests and limits fields, as these
specifications are taken into account when the pod is scheduled by the Kube-Scheduler.

2A restart policy in Kubernetes defines the conditions under which a pod should be restarted after it
exits.

10



2.3 Kubernetes RAM management

The use of the request and limit fields can be summarised by the following image:

Figure 2.5: Pods requests and limits visual representation

Note that the overcommitment is only theoretical. In this project, the requests and
limits values of a pod will be specified in the deployment file of the experiments.

If a pod does not have a specified request/limit field, and neither does the namespace
it is in, then it is able to use all the resources available on the node.[10]

When a pod with memory specifications (request/limit) needs to be launched, the
Kube-Scheduler looks at the memory it needs (request) and finds a node which satisfies
this condition. Once the pod has been scheduled on a node, the node’s kubelet will
instantiate the pod (with the docker run command, for example, or using containerd or
any other containerization engine) and pass the memory arguments to the runtime. If
a pod exceeds its limit, the kubelet will call the OOMKiller and it will terminate the
process requesting memory allocation. If the process’s PID is 1, then the container will
be killed and restarted according to the pod’s restart policy. Limits can be applied in two
ways: reactively, where the system takes action after detecting a violation, or through
enforcement, where the system ensures the container never surpasses the limit. Various
container runtimes may have distinct methods for applying the same constraints.

If a pod needs to be scheduled but no node can meet the pod’s RAM demand, then
the pod will be in a ‘pending’ state until a node can execute it.

Note that Kubernetes does not support swap memory in the version used in this
project. The command swapoff -a must be run on each worker node of a Kubernetes
cluster. Consequently, the swap memory is not included in this study.
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2.4 Monitoring of both
To study the way Docker and Kubernetes manages containers in different situations, a
monitoring infrastructure is needed to gather the metrics and logs. As the monitoring
aspect had already been dealt with in certain courses and in other related projects
(whether school-related or not), the tools were quickly chosen. The aim of this part of
the analysis is not to detail all the tools one by one, but rather to explain how they
fit into the overall architecture. If further information is required, a link to the official
documentation for each tool will be provided.

2.4.1 Metrics part

To collect metrics and display them on visual dashboards, the following tools have been
chosen:

1. Prometheus[11], which is a TSDB and monitoring tool used mainly for monitoring
purposes. It is one of the most known TSDB used to monitor infrastructures. It
represents the tool that scraps the metrics on the monitored servers, by requesting
information to specific tools APIs.

2. cAdvisor[12], which is an application tool that listens to the container engine
API to gather information about running containers. Note that cAdvisor can
be installed as a container on a native Docker environment. Such installation is
not required on Kubernetes as cAdvisor is already installed in the Kubelet binary
(cAdvisor has been developed by Google, like Kubernetes). cAdvisor exposes
metrics on a specific port, that Prometheus uses.

3. Node-Exporter[13], which is an application tool that gather multipe information
about the host. Like cAdvisor, it can be installed as a container. On a Kubernetes
installation, a DaemonSet may be preferred, ensuring that all nodes run a copy
of a Node-Exporter pod. Node-Exporter exposes metrics on a specific port, that
Prometheus uses.

4. Grafana[14], which is a web application used to create visual dashboard from
Prometheus metrics (and other datasources).

Note that inside containerised environments, commands such as "top" or "htop"
cannot be used to provide reliable information as they take their information from
the /proc/meminfo file, which is not namespaced. If one of these two commands is
executed inside a container, the results will show information about the entire host, not
only the current container.
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2.4.2 Logging part

To collect logs from running containers and display them, the following tools have been
choosen:

1. Elasticsearch[15], which is a database used to store different types of data,
including log files.

2. Filebeat[16], which is a tool used to export logs of running containers to an
Elasticsearch database. It can be ran as a container on a Docker environment,
and as a DaemonSet on a Kubernetes cluster. Filebeat sends its data to the
Elasticsearch database.

3. Kibana[17], which is a web application used to browse logs from multiple sources
and environments. Kibana queries Elasticsearch to display specified log files.

This technical stack is often call an "ELK Stack", because those 3 products comes
from the same enterprise: Elastic[18].

2.5 Infrastructure automation
The infrastructure deployed in this project is composed of multiple virtual machines,
running on an OpenStack[19] cluster at the HEIA-FR. To simplify test execution and
reproducibility, it is preferable to automate as many elements of the infrastructure as
possible. For this reason, the deployment and configuration of the infrastructure itself
are automated, in addition to the launch of the tests. To do so, 2 tools are mainly
used: Terraform and Ansible.

2.5.1 Terraform

Terraform[20], an IaC (Infrastructure as Code) tool developed by Hashicorp and first
released in 2014, enables users to define infrastructure in documents and deploy
configurations to a hypervisor for constructing virtual machines, networks, and more.
It is particularly useful for cloud computing projects because it allows users to select
virtual machine types, establish virtual networks and routers, incorporate an SSH key
for secure remote access, and set security protocols, such as limiting access to just the
SSH port.

Terraform can interface with multiple cloud provider APIs, including OpenStack which
is the hypervisor used in this project.

2.5.2 Ansible

Ansible[21] is a tool maintained by RedHat and used for configuration automation. It
employs the SSH protocol to establish connections with remote machines for configura-
tion purposes. Machines must have a pre-configured SSH key to allow Ansible access,
similar to the capability described in the Terraform analysis where virtual machines
are set up with a registered SSH key. This setup enables Ansible to configure these
machines and, if necessary, add another SSH key for administrator remote access.
Ansible’s control node can run on any machine equipped with Python. Unlike tools
such as Chef or Puppet, Ansible does not require the installation of an agent on each
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machine; it relies solely on SSH for machine configuration. In this project, Ansible is
used to configure the virtual machines and to start an experiment previously configured
by the administrator on its laptop.

2.6 How the cloud providers manages RAM
One of the aims of this project is to study the way in which cloud providers monitor
and charge users according to the RAM used within their services. Part of the analysis
therefore focused on the following cloud providers:

• Amazon Web Services (AWS)

• Google Cloud Platform (GCP)

• Microsoft Azure (Azure)

Precisely, this section aims to list multiple "Containers as a Service" solutions, and to
explain the aspects of RAM-based billing and how cloud providers manage RAM quotas
and potential overruns.

2.6.1 CaaS solutions

Container as a Service solutions have gained widespread adoption across industries and
cloud providers due to their ability to enhance application deployment, management,
and scalability. The rise of microservices architectures has driven much of this growth,
with businesses appreciating the modular approach to managing applications[22]. Each
cloud provider offers multiple solutions for deploying scalable containerized applications.
The aim of this study is not to examine every solution, but rather to offer an overall
view. It is important to note, however, that the solution to be chosen for deploying an
application depends on many factors that should be studied before selecting a particular
solution.
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Here is the example of the solutions offered by AWS that are only used for containerized
applications:

Figure 2.6: All CaaS solutions offered by AWS (total of 20)

A lot of solutions offered by AWS, GCP and Azure are equivalent. Here are 3 examples:

• A Kubernetes cluster managed by the cloud provider, which seems to be
their highlighted product:

– AWS: Amazon Elastic Kubernetes Service - "The most trusted way to start,
run, and scale Kubernetes"

– GCP: Google Kubernetes Engine - "The most scalable and fully automated
Kubernetes service"

– Azure: Azure Kubernetes Service - "Innovate, deploy, and operate Kuber-
netes seamlessly"
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• A way to deploy serverless containers to avoid managing clusters and
infrastructures:

– AWS: AWS Fargate - "Serverless compute for containers"

– GCP: GCP Cloud Run - "Build applications or websites quickly on a fully
managed platform"

– Azure: Azure Container Instances - "Develop apps fast without managing
virtual machines or having to learn new tools—it’s just your application, in
a container, running in the cloud."

• A way to easily run containerized applications or build microservices:

– AWS: Amazon Elastic Container Service - "Run highly secure, reliable, and
scalable containers"

– GCP: Google Kubernetes Engine - "The most scalable and fully automated
Kubernetes service" (same as the first example)

– Azure: Azure Container Apps - "Azure Container Apps is a scalable service
that lets you deploy thousands of containers without requiring access to the
control plane."

According to several articles[23][24][25], the 3 cloud providers mentioned above offer
relatively similar functions, but in general terms:

1. AWS is the most widely used cloud provider in the world, with datacenters all
over the world.

2. GCP may be the best cloud provider for Kubernetes-related industries, as Ku-
bernetes has been developed and maintained by Google. These articles are also
pointing out that Google may be the best cloud provider for bigdata-related
projects, as it offers the most advanced deep learning models and powerful
hardware accelerators[25].

3. Azure may be the best cost-effective choice for multiple solutions, especially
Microsoft-related solutions.
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2.6.2 RAM-based billing

Each cloud provider provides its users with full documentation on how the services are
billed, as well as a price calculator that takes a number of parameters into account. It is
often that cloud providers explains the billing process of each solution on the product’s
web page. These resources are available to the following links:

1. AWS:

(a) Documentation: Example with Amazon Elastic Kubernetes Service: https:
//aws.amazon.com/eks/pricing/

(b) Calculator: https://calculator.aws/#/

2. GCP:

(a) Documentation: Example with Google Kubernetes Engine: https://cl
oud.google.com/kubernetes-engine?hl=en#pricing

(b) Calculator: https://cloud.google.com/products/calculator

3. Azure:

(a) Documentation: Example with Azure Kubernetes Service: https://azur
e.microsoft.com/en-us/pricing/details/kubernetes-ser
vice/

(b) Calculator: https://azure.microsoft.com/en-gb/pricing/ca
lculator/

Below are written some explanations on the way AWS, GCP and Azure provides their
RAM-based billing for a containerized workload.

1. AWS: There are two different charge models for Amazon ECS: the AWS Fargate
Launch Type Model and the Amazon EC2 Launch Type Model. For this study,
the first one has been choosen. AWS Fargate pricing is calculated based on the
vCPU, memory, Operating Systems, CPU Architecture, and storage resources
used from the time the user starts to download its container image until the
Amazon ECS Task or Amazon EKS Pod terminates, rounded up to the nearest
second. The price is defined using the number of vCPU and GB of RAM used
by the container. The price of 1 GB of RAM depends on the location of the
container (the AWS Region in which the container will be executed). For example,
in the region eu-west-3 which is in Paris, each GB of RAM used costs $0.00159
per hour. There is no overrun possible as AWS considers its resources as infinite.
The final cost will then follow the application RAM usage (and CPU).
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2. GCP: The GKE charging model is based on the Compute Engine billing model.
The cost will depend on the Kubernetes nodes specifications. For example, for a
single-node cluster with 1GB of RAM and 1 vCPU in the europe-west4 region
based in Netherlands, the cost will be of $104.13 per month. If the single-node
has 4GB of RAM and still 1 vCPU, the new cost will be of $114.86 per month.
There is no overrun possible as the Kubernetes cluster is executed on a virtual
machine with a defined number of RAM available. If a container asks for too
many RAM, the behavior will be the same as on a normal Kubernetes cluster.3

3. Azure: The Azure Container Instance billing model is the same as the AWS
Fargate model. For example, in the West Switzerland region, the cost of 1 GB
of RAM is $0.00676 per hour. This cost is higher than the AWS one, but Azure
offers different saving plans for 1 and 3 years. In such cases, a discount up to
52% can be applied.

To conclude this part of the analysis, each cloud provider offers solutions that are
very similar to those of its competitors. Some cloud providers have several billing
methodologies, but all agree to bill users according to the number of vCPUs and GB of
RAM they use (or reserve in the case of a virtual machine).

3The AWS EC2 billing model is similar to the GCP Compute Engine billing model.

18



3 | Design
This chapter explains how the project has been designed, from the stress tool that
has been developed to the infrastructure deployed to study the behavior of the Docker
engine and Kubernetes. Many diagrams and images are available in this part of the
report to make it easier for the reader to understand the project.

The first part focuses on the C++ stress-tool application, with the list of features,
commands and other specificities. The second part explains how the infrastructure is
designed and what tools are used to automate its deployment and configuration.

Contents
3.1 C++ application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 List of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 List of commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Testing infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

19



Chapter 3. Design

3.1 C++ application
This section describes the design of the C++ application that is used to allocate and free
memory sequentially. Note that this application is inspired by existing stress tools, that
can be found on different repositories and download pages[26][27]. This application is
deployed in containerisation environments, which is why the chapter on implementation
also covers this aspect.

3.1.1 List of features

The objective is to provide a way to the administrator to configure different testing
procedures where the stress tool juggles between allocation and deallocation procedures,
as defined in a configuration file. The following features have been point out to carry
out this objective:

• Allocation of a given number of bytes or RAM, as many times as required by the
administrator.

• Each allocation is independent in size and is identified by a unique ID.

• Deallocation procedure of a block identified by its ID can be achieved anytime
after the allocation, even if other allocations have been made between.

• The tool has a capability to wait for a given duration.

• Allocation, deallocation and waiting instructions can be defined as many times as
wanted by the adminsitrator in a configuration file that the application parses at
the beginning of the program.

• In case an allocation instruction is called but no deallocation for the allocated block
of memory, this block is deallocated automatically at the end of the program.

• The application logs every action in the STDOUT output. This output is used
by Docker to create the log file of the container.

It is also interesting to define aspects of development that are not part of this project,
in particular the fact that this is an application developed for testing only. As a result,
the parser of the configuration file does not implement error handling, as it is supposed
that the administrator knows how to write the list of instructions.

20



3.1 C++ application

3.1.2 List of commands

Administrators can use 3 different commands to configure their experience. He describes
his experiment imperatively and sequentially, and the program will execute each instruc-
tion one by one. The commands are written in a text file, called experiment-config.txt
that will be read by the program. The available commands are the following:

• Allocation of SIZE bytes of memory under the block ID ID:

– Syntax: allocate [SIZE] [ID]

– Example: allocate 1024 block1

• Deallocation of the block ID ID:

– Syntax: allocate [ID]

– Example: deallocate block1

• Wait for DURATION second(s):

– Syntax: wait [DURATION]

– Example: wait 10

If an allocation is made but the administrator forgot to write the deallocation instruction,
the program will automatically deallocate this block at the end of the instructions list.
Here is an example of an experiment configuration:

wait 20
allocate 1024 block1
wait 10
deallocate block1
wait 5
allocate 2048 block2
wait 5
allocate 123456789 block3
wait 40
deallocate block2
deallocate block3
wait 10
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3.2 Testing infrastructure
The infrastructure designed to study the behavior of Docker and Kubernetes in different
situations is shown below:

Figure 3.1: Design of the infrastructure automatically deployed

Terraform is used to create virtual machines, networks, and other elements to have the
base of the infrastructure. Then, Ansible connects to each node to install softwares
such as Docker, Kubernetes, dependencies, monitoring stack... Almost the entire
configuration of each machine is automated. Each virtual machine has a specific role,
which is explained below:

• The "infra" virtual machine hosts the monitoring tools. This machine is not
tested, it is used to provide monitoring dashboards and logs from containers.

• The "docker" virtual machine executes a native Docker engine. This is the first
testing environment.

• The "master01" and "worker01" represents a Kubernetes cluster with a single
worker node. Pods are only scheduled on "worker01". This is the second testing
environment.
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The IP addresses shown in this image may be different when re-deploying the
infrastructure as the subnet 192.168.1.0/24 has a DHCP server maintained by
OpenStack and the subnet 160.98.37.0/24 represents the floating IPs of the
OpenStack Green cluster, which are dynamically assigned to virtual machines.

The way the administrator starts an experiment and looks at the monitoring and logging
results can be shown as an UML diagram. In this case, a diagram has been created
with some components and use case parts.

Figure 3.2: Components / Use Case diagram of an experiment. This diagram is also
available in the Appendix A for a better readability.

The administrator can configure an experiment on it’s laptop, by modifying the
experiment-config.txt file. This file contains all the actions the stress-tool will perform,
using commands described in the C++ application design section. Once configured,
the experiment can be launched using an Ansible playbook. There is one playbook for
the Kubernetes cluster, and one playbook for the native Docker environment. Once
started, the administrator can check results on many Grafana dashboards showing RAM
consumption of containers and their limits, but also metrics about the host. It is also
possible to discover logs of containers on the Kibana web interface. The diagram shows
the listening port of each tool, and also the way the experiment is started. From a
laptop, the administrator can start an Ansible playbook and the tool will connect to
virtual machines to execute commands on them and start the experiment.

23
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This chapter explains how the project was technically implemented. The first part is
about the C++ stress-tool application that has been developed and containerized, and
then the focus is made on the deployment and automation of the infrastructure. It
has been chosen to automate the infrastructure to facilitate the replication of testing
procedures in the same environment.

This chapter does not aim to provide a complete explanation of the C++ source code,
either of the containerization process or other technical topics. It outlines the major
parts of the implementation, but it is suggested to visit the technical GitLab repository
of the project to see the full C++ code, Terraform, Ansible files and other configuration
files[28].
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4.1 C++ application
This section explains the key parts of the C++ application. To browse the full source
code, follow the technical GitLab repository of the project[28].

4.1.1 Source code

The source code of the application is relatively simple, and is centralized in a single
main.cpp file. The program reads the configuration file of the experiment, named
config.txt and does actions depending on the instructions written by the administrator
in this file.

int main() {
printWithTimestamp("Starting stress tool.");
std::string filePath = "config.txt";
processInstructions(filePath);
printWithTimestamp("End of program.");
return 0;

}

The 2 key parts of this program are the way the tool allocates and frees memory blocks,
and how it can get information on its RAM usage.

Memory allocation and deallocation
The memory allocation is made by the following block of code:

# allocations map: std::unordered_map<std::string, char*> allocations;
char* memory = static_cast<char*>(malloc(size));
if (memory != nullptr) {

allocations[id] = memory;
printWithTimestamp("Allocation of " + std::to_string(size) + " bytes (ID =

" + id + ").");↪→
memset(memory, 0, size);

} else {
printWithTimestamp("An error occured while allocating " +

std::to_string(size) + " bytes (ID = " + id + ").");↪→
}

It allocates a block of memory of size bytes. If the allocation is successful (meaning
memory is not nullptr), it stores the allocated memory pointer in a map allocations
with id as the key. Note that id is chosen by the administrator in its configuration file
to identity this block, and tell the program to deallocate it later. Then, the memset()
function initializes the block to 0. If the allocation fails, it logs an error message with
specified information. The deallocation of a block is made by the following block of
code:

# allocations map: std::unordered_map<std::string, char*> allocations;
auto it = allocations.find(id);
if (it != allocations.end()) {

free(it->second);
allocations.erase(it);
printWithTimestamp("De-allocating memory block with ID = " + id + ".");

} else {
printWithTimestamp("No memory block found for ID = " + id + ".");

}
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It first searches for a memory allocation associated with a given id in the allocations
map. If found, it deallocates the memory using free and then removes the entry from
the map. If not found, it logs an error message with the block ID.

Information about RAM usage
A process can ask the kernel many information on itself using the /proc/self/ directory.
It’s content is dynamically modified by the operating system depending on the current
process running on the logical CPU[29]. Therefore, when the C++ application tries to
access this folder, it can browse multiple information on itself. Here is an example[30]
of the content of the /proc/self/status file (truncated):

$ cat /proc/$$/status
VmPeak: 131168 kB
VmSize: 131168 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 13484 kB
VmRSS: 13484 kB
RssAnon: 10264 kB
RssFile: 3220 kB
RssShmem: 0 kB
VmData: 10332 kB
VmStk: 136 kB
VmExe: 992 kB
VmLib: 2104 kB
VmPTE: 76 kB
VmPMD: 12 kB
VmSwap: 0 kB

There is a lot of information on memory usage of the process, but the interesting ones
for this project are the following:

• VmSize: Virtual memory size, which represents the global RAM usage of the
process.

• VmRSS: Resident set size, which represents the portion of physical RAM used.
The documentation[30] says that this value may not be accurate.

The C++ application reads this file whenever it needs and prints the value of both fields.
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4.1.2 Docker image

When the source code of the application is modified for any reason, the new version
is packaged in a Docker image and pushed to a registry (see the "CI/CD pipeline"
section). The Dockerfile of the project is the following:

FROM debian:bullseye-slim
RUN apt-get update && apt-get install -y \

build-essential \
libboost-all-dev \
&& rm -rf /var/lib/apt/lists/*

COPY stress-tool/ /usr/src/stress-tool/
WORKDIR /usr/src/stress-tool
RUN g++ -o stress-tool main.cpp
CMD ["./stress-tool"]

This Dockerfile simply installs required packages, setup the environment and build the
application. The container then starts with the stress-tool as its only process.

Note that this is a Debian-based image. This choice has been made to allow adminis-
trator to install different packages in the container when it is running, allowing him to
debug and test features more easily. For example, a testing procedure of the project
requires the installation of the Docker CLI inside of the container, which is made easier
on a Debian container than on a GCC-based container. An other good choice would
have been to use a lightweight and secure Alpine image.

4.1.3 CI/CD pipeline

The technical GitLab repository contains a .gitlab-ci.yml file that automates the creation
of a Docker image including the stress-tool application, and pushes this image to the
Docker Hub. As this part can be considered as a Continuous Integration pipeline, the
second part where the administrator starts an experiment is not fully automated (for
voluntary reasons). Anyway, the global pipeline from the development of the application
to its deployment on the native Docker environment and the Kubernetes cluster can be
seen as following:

Figure 4.1: Full pipeline process of the project. This diagram is also available in the
Appendix B for a better readability.
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Note that when the image is pushed to the registry and pulled on both environments,
the administrator does not need to commit a new change to start an experiment. To
start a new experiment, he just needs to modify the experiment-config.txt file on his
laptop and start the Ansible playbook related to the environment he wants to deploy the
test on. It is also important to know that this pipeline does not show the deployment
of the infrastructure, so Terraform is not mentioned on it.

4.2 Infrastructure automation
This section outlines the key parts of the infrastructure deployment and automation
using Terraform and Ansible tools.

4.2.1 Deployment using Terraform

This section uses Terraform files already used during other projects, such as "Infras-
tructures et systèmes virtualisés" course and "Projet de semestre 5" project.

The technical GitLab repository[28] includes a Terraform folder that contains all the
code files needed to build the infrastructure:

1. main.tf : The main file that uses other files to provision the infrastructure and
output results. It assigns a floating IP to each virtual machine.

2. network.tf : Defines the virtual network, router, and subnet configuration. It also
provides DNS nameservers to virtual machines so they can browse the web like
regular computers and access mirror repositories to download packages.

3. providers.tf : Specifies the providers used by Terraform, which in this case is only
OpenStack.

4. security_group.tf : Outlines how the virtual router (acting as a firewall) should
filter packets to and from a virtual machine. To avoid issues, and because this
project is in a development environment not accessible from the Internet,
most ports are open.

5. ssh_key.tf : Specifies the SSH key automatically added to the virtual machines.
A specific key has been created for Ansible to configure the machines directly
without administrator intervention.

6. version.tf : Defines the minimum required version for the OpenStack provider,
which must be 0.14.0 or higher.

7. variables.tf : Lists all variables of the infrastructure, including the number of virtual
machines, their names, operating systems, flavors, and network attachments.

These are "pure" Terraform files used for provisioning the infrastructure. Additionally,
2 other files are created by the Terraform apply process, which are based on the ansible-
hosts.tpl and prometheus-targets.tpl. These are template files filled by Terraform
to create the inventory file used by Ansible to access all virtual machines and the
Prometheus targets list used for monitoring purposes.
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The Terraform configuration should not be changed as the automation is designed
to operate on the 4 machines defined as standard. There is no reason other virtual
machines should be added to the infrastructure. It is also not advisable to change the
order of the machines in the variables.tf file, as this would have the effect of distorting
the name of each server (the server named docker would actually be the infra server,
for example).

4.2.2 Configuration and exploitation using Ansible

The ansible folder of the project stores all configuration and playbook files used to
configure the virtual machines once they have been deployed and execute experiments
on them.

Infrastructure configuration
Once deployed with Terraform, the administrator can setup the whole infrastructure
using the setup-everything.yml playbook file, which is the following:

---
# Approximately 12 minutes
- import_playbook: ./setup-infra.yml
- import_playbook: ./setup-docker.yml
- import_playbook: ./setup-k8s-master.yml
- import_playbook: ./setup-k8s-worker.yml

All it does is importing other playbooks that configures each virtual machine. Each
sub-playbook will not be explained in this report, but they can be browsed on the GitLab
project. Keep in mind that these playbooks installs all the dependencies, tools, and the
monitoring stack (including pre-configured Grafana dashboards on the infra VM) on
each machine. Once the playbook is finished, the administrator can start to monitor
its infrastructure by logging to the Grafana and Kibana UI, accessible to the following
URLs:

• Grafana: [vm-infra-ip]:3000

• Kibana: [vm-infra-ip]:5601

There are 2 pre-configured Grafana dashboard. One is used to display host’s information,
and the other is used to display containers information. Screens of the dashboards are
available in the chapter 5 of this report.
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Running an experiment
To automate the deployment of an experiment, there is one playbook for the Docker
environment and one playbook for the Kubernetes environment. Here is the playbook
for the Docker one:

---
- hosts: docker

become: yes
tasks:
- name: copy configuration of experiment

copy:
src: ../files/experiment-config.txt
dest: /home/ubuntu/config.txt
owner: root
group: root

- name: Pull new version of image in case it has been updated
shell: docker pull leichap/heia-stress-tool:latest

- name: Pre-config virtual machine
shell: docker run -name stress-tool -v

/home/ubuntu/config.txt:/usr/src/stress-tool/config.txt -d --rm
leichap/heia-stress-tool

↪→
↪→

This playbook transfers the configuration of the experiment to the Docker host, pulls
the new version of the image and runs the container. It is possible to modify the
command if the administrator needs to. For example, once the experiment is finished
the container is automatically removed. To avoid this behaviour to perform a "docker
inspect" command on the container once it has ended, the administrator can remove the
–rm flag of the "docker run" command and run the playbook. The Kubernetes-related
playbook is the following:

---
- hosts: k8sworker

tasks:
- name: copy configuration of experiment on worker node

copy:
src: ../files/experiment-config.txt
dest: /home/ubuntu/config.txt
owner: ubuntu
group: ubuntu

- hosts: k8smaster
tasks:
- name: Remove any old experiment pod

shell: kubectl delete -f /home/ubuntu/pod.yaml
ignore_errors: yes

- name: copy configuration of pod
copy:

src: ../files/kubernetes-pod-object.yml
dest: /home/ubuntu/pod.yaml
owner: ubuntu
group: ubuntu
mode: 0644

- name: Apply new pod configuration
shell: kubectl apply -f /home/ubuntu/pod.yaml
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It first transfers the configuration of the experiment to the worker node, as this file
is mounted inside the pod. Then, it makes sure that there is no other experiment
currently running, and it finally starts a new experiment using the new version of the
Pod configuration.

The technical GitLab repository contains a README file that explains in details
how to start an experiment for both Docker and Kubernetes environment, and how
to monitor results. It also explains how to modify the Pod configuration of the
Kubernetes experiment.
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5 | Results and interpretation
This chapter presents all the test strategies and procedures defined as part of the
project. For each strategy, several procedures have been defined. For each procedure,
a detailed explanation is provided in a summary table. A brief overview of the results is
also available in each table. The results are then explained in detail. A summary of all
the tests is given at the end of the chapter with ideas of other experiments and side
results.
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5.1 Testing strategy 1

5.1 Testing strategy 1
The first testing strategy of the project is described below:

Figure 5.1: Testing strategy 1

Its purpose is to answer the first questions asked in the objective section of this report.
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Chapter 5. Results and interpretation

5.1.1 Testing procedure DOCKER-1-1

The testing procedure DOCKER-1-1 is described below with associated results:

Figure 5.2: Testing procedure DOCKER-1-1

The experiment created for this testing procedure is the following:

wait 20
allocate 104857600 id1 #100MB
wait 20
allocate 104857600 id2
wait 20
allocate 52428800 id3 #50MB
wait 20
allocate 52428800 id4 # ------ this instruction must kill the container
wait 20
allocate 52428800 id5
wait 20
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Note that the container has been launched with a RAM limit set to 300MB. To confirm
the hypothesis, it must be OOMKilled before the 4th allocation instruction. The
associated Grafana dashboard is available here:

Figure 5.3: DOCKER-1-1: Grafana dashboard

The horizontal line at the top represents the limit set for the container. Note that the
2 allocations of 100MB and the 3rd allocation of 50MB run without any problem, but
that the 4th allocation never runs. This is because the container was killed trying to
make this allocation. The container cannot therefore exceed the limit imposed on it.
To ensure that the container has been killed by the Docker engine for having exceeded
its limit, it is possible to check its state using the "docker inspect" command (output
truncated):

"State": {
"Status": "exited",
"Running": false,
"Paused": false,
"Restarting": false,
"OOMKilled": true,
"ExitCode": 137

}

The "OOMKilled" value is set to "true", validating the fact that the container was
killed by the engine.

In all Grafana dashboards, it is possible that the line representing the RAM con-
sumption of the container/pod continues even after the container/pod has been
killed. This is due to cAdvisor behaviour.
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5.1.2 Testing procedure K8S-1-1

The testing procedure K8S-1-1 is described below with associated results:

Figure 5.4: Testing procedure K8S-1-1
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The experiment created for this testing procedure is the following:

wait 20
allocate 104857600 id1 #100MB
wait 20
allocate 104857600 id2
wait 20
allocate 52428800 id3 #50MB
wait 20
allocate 52428800 id4 # ------ this instruction must kill the pod
wait 20
allocate 52428800 id5
wait 20

Note that the pod has been launched with a RAM limit set to 300MB. To confirm the
hypothesis, it must be OOMKilled before the 4th allocation instruction. The associated
Grafana dashboard is available here:

Figure 5.5: K8S-1-1: Grafana dashboard

The horizontal line at the top represents the limit set for the container. This result
is the same as for the DOCKER-1-1 testing procedure. The 4th allocation is asking
for a too big amount of memory, so Kubernetes kills the pod because it would have
exceeded its limit. An other way to see that the pod has been killed is by querying the
Kubernetes API:

[PS6] ubuntu@master01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
stress-tool 0/1 OOMKilled 0 7m13s
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5.2 Testing strategy 2
The second testing strategy of the project is described below:

Figure 5.6: Testing strategy 2

Its purpose is to answer the second question asked in the objective section of this
report.

38



5.2 Testing strategy 2

5.2.1 Testing procedure DOCKER-2-1

The testing procedure DOCKER-2-1 is described below with associated results:

Figure 5.7: Testing procedure DOCKER-2-1

The experiment created for this testing procedure is the following:

wait 300 # give time to administrator to enter into the container and type
commands↪→
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When the volume /var/run/docker.sock is mounted to the container, it is possible to
query the Docker API to gather information on running containers. For example, from
inside the stress-tool container, once the Docker client in installed, the output of the
"docker stats" command is the following (network I/O have been truncated for a better
readibility):

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % PIDS
a168b36241f4 stress-tool 0.81% 9.59MiB / 15.62GiB 0.06% 12
dfad28df2a48 node-exporter 0.00% 12.38MiB / 15.62GiB 0.08% 8
6b2cf6441ad5 cadvisor 5.98% 25.3MiB / 15.62GiB 0.16% 26
1c6b66913add filebeat 0.62% 42.63MiB / 15.62GiB 0.27% 4

The cAdvisor container is using the same principle to monitor running containers. Note
that mounting the /var/run/docker.sock socket may represent a serious security issue
as the container gain access to the whole Docker API.
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5.2.2 Testing procedure K8S-2-1

The testing procedure K8S-2-1 is described below with associated results:

Figure 5.8: Testing procedure K8S-2-1

The experiment created for this testing procedure is the following:

wait 300 # give time to administrator to enter into the container and type
commands↪→
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To use the Downward API, the YAML description of the pod has been modified to
add environment variables that are given to the pod. The new pod description is the
following:

apiVersion: v1
kind: Pod
metadata:

name: stress-tool
spec:

restartPolicy: Never
containers:
- name: stress-tool-container

image: leichap/heia-stress-tool
imagePullPolicy: Always
volumeMounts:
- name: config-volume

mountPath: /usr/src/stress-tool/config.txt
resources:

requests:
memory: "300Mi"

limits:
memory: "300Mi"

env:
- name: MEMORY_REQUEST

valueFrom:
resourceFieldRef:
containerName: stress-tool-container
resource: requests.memory

- name: MEMORY_LIMIT
valueFrom:
resourceFieldRef:
containerName: stress-tool-container
resource: limits.memory

volumes:
- name: config-volume

hostPath:
path: /home/ubuntu/config.txt
type: File

From inside the pod, the administrator can echo these 2 environment variables and see
the results:

[PS6] ubuntu@master01:~# kubectl exec -it stress-tool -- /bin/sh
# echo $MEMORY_REQUEST
314572800
# echo $MEMORY_LIMIT
314572800

By calculating manually the exact number of bytes:

300MiB = 300× 1 048 576 bytes = 300× 220 bytes = 314 572 800 bytes

The results are the same. The pod has access to its requests and limits fields using the
Downward API in environment variables mode.
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5.2.3 Testing procedure DOCKER-2-2

The testing procedure DOCKER-2-2 is described below with associated results:

Figure 5.9: Testing procedure DOCKER-2-2

The experiment created for this testing procedure is the following:

wait 300 # give time to administrator to enter into the container and type
commands↪→
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To test the "docker stats" command, the container must be started and the admin-
istrator must be logged in SSH on the Docker host. Once connected, they can try
the "docker stats" command. The output is the following (network I/O have been
truncated for a better readibility):

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % PIDS
a168b36241f4 stress-tool 0.62% 10.14MiB / 15.62GiB 0.06% 13
dfad28df2a48 node-exporter 0.00% 12.09MiB / 15.62GiB 0.08% 8
6b2cf6441ad5 cadvisor 16.12% 25.12MiB / 15.62GiB 0.16% 26
1c6b66913add filebeat 0.59% 44.04MiB / 15.62GiB 0.28% 15

Note that the values seen from inside and outside of the container are the same, as
the same tool ("docker stats" command) is used. This is not true in other experiment
cases (DOCKER-2-3 and K8S-2-3).
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5.2.4 Testing procedure K8S-2-2

The testing procedure K8S-2-2 is described below with associated results:

Figure 5.10: Testing procedure K8S-2-2

The experiment created for this testing procedure is the following:

wait 300 # give time to administrator to enter into the container and type
commands↪→
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Note that to test the "kubectl top pod [pod]" command, the Metrics API must be
installed and operational on the Kubernetes cluster. The result of the command
"kubectl top pod stress-tool" is the following:

NAME CPU(Cores) MEMORY(Bytes)
stress-tool 3m 11Mi

The output shows the RAM consumption of the workload, from outside the pod.
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5.2.5 Testing procedure DOCKER-2-3

The testing procedure DOCKER-2-3 is described below with associated results:

Figure 5.11: Testing procedure DOCKER-2-3
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The experiment created for this testing procedure is the following:

wait 20
allocate 104857600 id1
wait 20
allocate 104857600 id2
wait 20
free id1
wait 20
allocate 52428800 id3
wait 20
free id2
wait 30
allocate 104857600 id1
wait 20
allocate 52428800 id4
wait 20
allocate 52428800 id5
wait 20
allocate 104857600 id2
wait 20

This configuration simulates a more realistic application where allocation and dealloca-
tion are made. The results obtained on Grafana are shown below:

Figure 5.12: DOCKER-2-3: Grafana dashboard

The table below compare the values between the logs of the container (sent by a C++
library that shows the RAM consumption of the application), the result of the "docker
stats" command and the Grafana dashboard.
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GRAFANA
STEP

EXPECTED
VALUE
(MiB)

GRAFANA
VALUE
(MiB)

DOCKER
STATS
VALUE
(MiB)

LOGS
VALUE
(MiB)

0 0 1.02 0.996 1.5

1 100 106 101.3 103.06

2 200 211 201.5 205.46

3 100 106 101.3 103.19

4 150 159 151.4 155.5

5 50 53 51.23 55.53

6 150 159 151.4 155.51

7 200 211 201.5 205.46

8 250 264 251.6 255.54

9 350 369 351.8 355.47

Table 5.1: DOCKER-2-3: RAM usage on each step of the graph

Considering each value on step 0 as the base offset of the application when no allocation
has been made, it is possible to substract this offset to other values to obtain the RAM
used only by allocation instructions:

GRAFANA
STEP

EXPECTED
VALUE
(MiB)

GRAFANA
VALUE
(MiB)

DOCKER
STATS
VALUE
(MiB)

LOGS
VALUE
(MiB)

0 0 0 0 0

1 100 104.98 100.304 101.56

2 200 209.98 200.504 203.96

3 100 104.98 100.304 101.69

4 150 157.98 150.404 154

5 50 51.98 50.234 54.03

6 150 157.98 150.404 154.01

7 200 209.98 200.504 203.96

8 250 262.98 250.604 254.04

9 350 367.98 350.804 353.97

Table 5.2: DOCKER-2-3: Offset subtracted to each value
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It is possible to see that there is no step where the 3 values are equal. Each tool may
access and interpret memory usage data in slightly different ways, leading to variations.
The C++ library might account for specific overheads or internal metrics, such as
memory used for caching or buffering, which cAdvisor or Docker stats might not take
into account. In the table, Grafana’s values are consistently slightly higher than Docker
stats, while the log values are also higher than Docker stats but generally lower than
Grafana’s values. An explanation to the difference between Grafana (which takes its
data from cAdvisor through Prometheus) and the "docker stats" command is that the
Docker CLI subtracts cache memory from the total RAM used. The Docker API used
by cAdvisor does not do this[7].
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5.2.6 Testing procedure K8S-2-3

The testing procedure K8S-2-3 is described below with associated results:

Figure 5.13: Testing procedure K8S-2-3
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The experiment created for this testing procedure is the following:

wait 20
allocate 104857600 id1
wait 20
allocate 104857600 id2
wait 20
free id1
wait 20
allocate 52428800 id3
wait 20
free id2
wait 30
allocate 104857600 id1
wait 20
allocate 52428800 id4
wait 20
allocate 52428800 id5
wait 20
allocate 104857600 id2
wait 20

This configuration simulates a more realistic application where allocation and dealloca-
tion are made. The results obtained on Grafana are shown below:

Figure 5.14: K8S-2-3: Grafana dashboard

The tables below compare the values between the logs of the pod (sent by a C++ library
that shows the RAM consumption of the application), the result of the "kubectl top
pod" command that uses the Metrics API and the Grafana dashboard. The expected
value column represents the total of RAM theoretically used by the current program,
depending on the configuration of the experiment.
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GRAFANA
STEP

EXPECTED
VALUE
(MiB)

GRAFANA
VALUE
(MiB)

METRICS
API VALUE

(MiB)

LOGS
VALUE
(MiB)

0 0 4.44 2 1.5

1 100 106 101 105.5

2 200 211 201 205.45

3 100 106 101 105.5

4 150 159 151 155.5

5 50 53 51 55.52

6 150 159 151 155.5

7 200 211 201 205.46

8 250 264 251 255.53

9 250 369 351 355.47

Table 5.3: K8S-2-3: RAM usage on each step of the graph

Considering each value on step 0 as the base offset of the application when no allocation
has been made, it is possible to substract this offset to other values to obtain the RAM
used only by allocation instructions:

GRAFANA
STEP

EXPECTED
VALUE
(MiB)

GRAFANA
VALUE
(MiB)

METRICS
API VALUE

(MiB)

LOGS
VALUE
(MiB)

0 0 0 0 0

1 100 101.56 99 104

2 200 206.56 199 203.95

3 100 101.56 99 104

4 150 154.56 149 154

5 50 48.56 49 54.02

6 150 154.56 149 154

7 200 206.56 199 203.96

8 250 259.56 249 254.03

9 250 364.56 349 353.97

Table 5.4: K8S-2-3: Offset subtracted to each value

The main takeaway is that Grafana tends to show slightly higher RAM usage compared
to the values recorded in the container logs and the Metrics API, likely due to the
factors mentioned previously in the DOCKER-2-3 experiment. Note that even when
the base offset is subtracted, the values of RAM usage are not equal to allocation size
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of each step. The fact that the Metrics API gives values that seem very similar (all
ending in 1) may be due to the fact that this API is only used for cluster scaling. The
official Kubernetes documentation does not recommend using this API for monitoring,
but rather using specialised tools[31]:

Integration of a full metrics pipeline into your Kubernetes implementation
is outside the scope of Kubernetes documentation because of the very wide
scope of possible solutions. The choice of monitoring platform depends
heavily on your needs, budget, and technical resources. Kubernetes does
not recommend any specific metrics pipeline; many options are available.
Your monitoring system should be capable of handling the OpenMetrics
metrics transmission standard and needs to be chosen to best fit into your
overall design and deployment of your infrastructure platform.[32]

5.2.7 Comparison of DOCKER-2-3 and K8S-2-3

It may be interesting to compare the values of the tables obtained on Docker and
Kubernetes to try and highlight similarities and differences.

Comparison of the values given by cAdvisor
The comparison of the values given by the cAdvisor tool and displayed on Grafana is
available in the following table:

GRAFANA
STEP

DOCKER
VALUE (MiB)

KUBERNETES
VALUE (MiB)

DIFFERENCE
(MiB)

0 1.02 4.44 335.29%

1 106 106 0.00%

2 211 211 0.00%

3 106 106 0.00%

4 159 159 0.00%

5 53 53 0.00%

6 159 159 0.00%

7 211 211 0.00%

8 264 264 0.00%

9 369 369 0.00%

Average
Variance (%) 33.53%

Table 5.5: Comparison of DOCKER-2-3 and K8S-2-3: cAdvisor values

The average variance does not reflect the dataset as the first step is the only to
have different values. This may be due to an error of measurement, even though the
experiment has been done 3 times. If this step is considered as an error and not taken
into account, the variance of the cAdvisor datasource is 0.0%, pointing out the fact
that cAdvisor gives the same results on Docker and Kubernetes for this workload. The
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reason why the Grafana and Metrics API values are higher than step 0 on Kubernetes
has not been found, especially as the value of the logs for this same step is equal to
the value of the Docker environment.

Comparison of the values given by docker stats and kubectl top pod
The comparison of the values given by the "docker stats" and "kubectl top pod"
commands is available in the following table:

GRAFANA
STEP

DOCKER
VALUE (MiB)

KUBERNETES
VALUE (MiB)

DIFFERENCE
(MiB)

0 0.996 2 100.80%

1 101.3 101 0.30%

2 201.5 201 0.25%

3 101.3 101 0.30%

4 151.4 151 0.26%

5 51.23 51 0.45%

6 151.4 151 0.26%

7 201.5 201 0.25%

8 251.6 251 0.24%

9 351.8 351 0.23%

Average
Variance (%) 10.33%

Table 5.6: Comparison of DOCKER-2-3 and K8S-2-3: docker stats and kubectl top
pod values

As for the latest comparison, the first line seems very out of step with all the others.
It’s possible that for some reason the offset of a workload is different on Docker and
Kubernetes. In any case, omitting this line, the average variance is 0.284%.
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Comparison of the values given by the logs of the application
As observed in 5.1 and 5.3 tables, the values given by the logs of the C++ stress-tool
application are very similar:

GRAFANA
STEP

DOCKER
VALUE (MiB)

KUBERNETES
VALUE (MiB)

DIFFERENCE
(MiB)

0 1.5 1.5 0.00%

1 103.06 105.5 2.36%

2 205.46 205.45 0.00%

3 103.19 105.5 2.24%

4 155.5 155.5 0.00%

5 55.53 55.52 0.02%

6 155.51 155.5 0.01%

7 205.46 205.46 0.00%

8 255.54 255.53 0.00%

9 355.47 355.47 0.00%

Average
Variance (%) 0.463%

Table 5.7: Comparison of DOCKER-2-3 and K8S-2-3: logs values

The average variance is 0.463%, which is a fairly low value. The C++ application
appears to be a reliable source of information regardless of the platform on which it is
run.
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5.3 Testing strategy 3
The third testing strategy of the project is described below:

Figure 5.15: Testing strategy 3

Its purpose is to answer the third question asked in the objective section of this report.
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5.3.1 Testing procedure DOCKER-3-1

The testing procedure DOCKER-3-1 is described below with associated results:

Figure 5.16: Testing procedure DOCKER-3-1

The experiment created for this testing procedure is the following:

wait 20
allocate 104857600 id1
wait 20
allocate 104857600 id2
wait 20
free id1
wait 20
free id2
wait 20
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This is a normal allocation procedure without any specificity. The goal is to know if the
application can see the RAM it uses. To do so, the logs of the container can be seen
on Kibana. For example, this is what Kibana looks like when filtering logs of a specified
container:

Figure 5.17: Kibana’s interface with logs of the stress-tool

For a better readability, the logs have been summarized in the following text box (the
date is omitted to gain space):

19:48:17 - Starting stress tool. - vRAM:5652 kB, PhysicalRAM:1508 kB
19:48:17 - Waiting 20 seconds... - vRAM:5652 kB, PhysicalRAM:1508 kB
19:48:37 - Allocation of 104857600 bytes (ID = id1). - vRAM:108056 kB,

PhysicalRAM:1508 kB↪→
19:48:38 - Waiting 20 seconds... - vRAM:108056 kB, PhysicalRAM:05608 kB
19:48:58 - Allocation of 104857600 bytes (ID = id2). - vRAM:210460 kB,

PhysicalRAM:105608 kB↪→
19:48:58 - Waiting 20 seconds... - vRAM:210460 kB, PhysicalRAM:208040 kB
19:49:18 - De-allocating memory block with ID = id1. - vRAM:108056 kB,

PhysicalRAM:105792 kB↪→
19:49:18 - Waiting 20 seconds... - vRAM:108056 kB, PhysicalRAM:105792 kB
19:49:38 - De-allocating memory block with ID = id2. - vRAM:5652 kB,

PhysicalRAM:3388 kB↪→
19:49:38 - Waiting 20 seconds... - vRAM:5652 kB, PhysicalRAM:3388 kB
19:49:58 - End of program. - vRAM:5652 kB, PhysicalRAM:3388 kB

The containerized application is fully capable of seeing the RAM it uses by reading the
values from the /proc/self/status file.
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5.3.2 Testing procedure K8S-3-1

The testing procedure K8S-3-1 is described below with associated results:

Figure 5.18: Testing procedure K8S-3-1

The experiment created for this testing procedure is the following:

wait 20
allocate 104857600 id1
wait 20
allocate 104857600 id2
wait 20
free id1
wait 20
free id2
wait 20
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This is a normal allocation procedure without any specificity. The goal is to know if the
application can see the RAM it uses. To do so, the logs of the container can be seen
on Kibana.

For a better readability, the logs have been summarized in the following text box (the
date is omitted to gain space):

20:44:22 - Starting stress tool. - vRAM:5652 kB, PhysicalRAM:1512 kB
20:44:22 - Waiting 20 seconds... - vRAM:5652 kB, PhysicalRAM:1512 kB
20:44:42 - Allocation of 104857600 bytes (ID = id1). - vRAM:108056 kB,

PhysicalRAM:1512 kB↪→
20:44:42 - Waiting 20 seconds... - vRAM:108056 kB, PhysicalRAM:105516 kB
20:45:02 - Allocation of 104857600 bytes (ID = id2). - vRAM:210460 kB,

PhysicalRAM:105516 kB↪→
20:45:02 - Waiting 20 seconds... - vRAM:210460 kB, PhysicalRAM:207948 kB
20:45:22 - De-allocating memory block with ID = id1. - vRAM:108056 kB,

PhysicalRAM:105696 kB↪→
20:45:22 - Waiting 20 seconds... - vRAM:108056 kB, PhysicalRAM:105696 kB
20:45:42 - De-allocating memory block with ID = id2. - vRAM:5652 kB,

PhysicalRAM:3292 kB↪→
20:45:42 - Waiting 20 seconds... - vRAM:5652 kB, PhysicalRAM:3292 kB
2024-05-14 20:46:02 - End of program. - vRAM:5652 kB, PhysicalRAM:3292 kB

As for the Docker environment test, the containerized application is fully capable of
seeing the RAM it uses by reading the values from the /proc/self/status file.
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5.3.3 Testing procedure DOCKER-3-2

The testing procedure DOCKER-3-2 is described below with associated results:

Figure 5.19: Testing procedure DOCKER-3-2

The experiment created for this testing procedure is the following:

wait 300 # give time to administrator to enter into the container and type
commands↪→
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Here is the result when the user "ubuntu" is not in the "docker" group:

[PS6] ubuntu@docker:~# docker stats
permission denied while trying to connect to the Docker daemon socket at

unix:///var/run/docker.sock: Get
"http://%2Fvar%2Frun%2Fdocker.sock/v1.24/version": dial unix
/var/run/docker.sock: connect: permission denied

↪→
↪→
↪→

The action is forbidden due to a lack of permission. The user cannot access the Docker
daemon socket, therefore they cannot query the Docker API to obtain information on
RAM usage of containers. This prohibition can be bypassed by retrieving information
from other places on the server, for example by using the "htop" command.

To add the user "ubuntu" to the "docker" group, the following command can be run
as root:

[PS6] root@docker:~# sudo usermod -aG docker ubuntu

Then, the "ubuntu" user can perform any Docker-related command such as "docker
stats", "docker ps"...

[PS6] ubuntu@docker:~# docker --version
Docker version 24.0.5, build 24.0.5-0ubuntu1~20.04.1

63



Chapter 5. Results and interpretation

5.3.4 Testing procedure K8S-3-2

The testing procedure K8S-3-2 is described below with associated results:

Figure 5.20: Testing procedure K8S-3-2

The experiment created for this testing procedure is the following:

wait 300 # give time to administrator to enter into the container and type
commands↪→

It is possible to restrict the access to the "kubectl top pod" using RBAC (Role-based
access control), which is a security framework in Kubernetes that controls access to
resources based on the roles of individual users within an organization. It ensures that
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only authorized users (based on their name or group) can perform specific actions on
resources. To restrict the access to the command, it is needed to create 2 Kubernetes
objects:

1. First, a ClusterRole with the necessary permissions to access pod metrics. The
following ClusterRole has been created:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: top-pod-clusterrole
rules:
- apiGroups: [""]

resources: ["pods"]
verbs: ["get", "list"]

- apiGroups: ["metrics.k8s.io"]
resources: ["pods"]
verbs: ["get", "list"]

2. Next, a ClusterRoleBinding to associate the ClusterRole with the specific user
that should have access to the kubectl top pod command. The following Cluster-
RoleBinding has been created:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: top-pod-clusterrolebinding
subjects:
- kind: User

name: "ubuntu"
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: top-pod-clusterrole
apiGroup: rbac.authorization.k8s.io

Then, the administrator can apply these 2 configurations and the command will be only
available to the "ubuntu" user and cluster administrators, that have full permission
regardless of the above configuration. When the configuration is applied, the user
"ubuntu" can access the command without any problem:

[PS6] ubuntu@master01:~# kubectl top pod
NAME CPU(cores) MEMORY(bytes)
stress-tool 1m 101Mi

When the configuration is deleted, or when the username is changed, the user "ubuntu"
gets the following error, stating this action is forbidden as intended:

Error from server (Forbidden): pods.metrics.k8s.io is forbidden: User "ubuntu"
cannot list resource "pods" in API group "metrics.k8s.io" in the namespace
"default"

↪→
↪→
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5.4 Testing strategy 4
The fourth testing strategy of the project is described below:

Figure 5.21: Testing strategy 4

Its purpose is to answer the last question asked in the objective section of this report.
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5.4.1 Testing procedure DOCKER-4-1

The testing procedure DOCKER-4-1 is described below with associated results:

Figure 5.22: Testing procedure DOCKER-4-1

The experiment created for this testing procedure is the following:

wait 20
allocate 1073741824 id1 # 1GB
wait 900 # 15 minutes
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The containers have been launched without any RAM limit. Multiple containers have
been started until the system is fully loaded. The RAM usage of the host has been
monitored using the Node-Exporter Grafana dashboard:

Figure 5.23: DOCKER-4-1: RAM usage of the host
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When the RAM reaches its limit on the host, the system frees up space by swapping
memory to the disk, as shown on the 2 following images:

Figure 5.24: DOCKER-4-1: The containers are writing and reading data to the disk

Figure 5.25: DOCKER-4-1: The "docker stats" command shows the swapping process
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Note that when there is enough RAM free on the host, the BLOCK I/O column of the
"docker stats" command is empty for all containers. When the RAM of the host is full,
some containers starts to exit. By using the "docker inspect [container]", it is possible
to check the exit code:

"State": {
"Status": "exited",
"Running": false,
"Paused": false,
"Restarting": false,
"OOMKilled": false,
"Dead": false,
"Pid": 0,
"ExitCode": 137,
"Error": ""

}

It is possible to see that the "OOMKilled" boolean is set to false, and the "ExitCode"
is 137, which means that the container has been killed using a SIGKILL signal. In fact,
the container has been OOMKilled, but not by the Docker daemon because it did not
exceed its limit, as it did not have one. This is why the boolean is set to false.

By looking at the /var/log/kern.log file of the host, it is possible to see that it is the
kernel’s OOMKiller that killed the container:

kernel: [1817509.239456] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cp ⌋
uset=bcdcf7e91da12b5a25b268e1bb4e4c2732ed073102dce840438d4d85872b6c16,mems_ ⌋
allowed=0,global_oom,task_memcg=/docker/9246b10d05d43a6186f73638bc4c30b1168 ⌋
145dcb3c12b853b4a537dca46f3ee,task=stress-tool,pid=2032871,uid=0

↪→
↪→
↪→
kernel: [1817509.239475] Out of memory: Killed process 2032871 (stress-tool)

total-vm:1054232kB, anon-rss:1048784kB, file-rss:0kB, shmem-rss:0kB, UID:0
pgtables:2104kB oom_score_adj:0

↪→
↪→

Is is the default behaviour of the Linux’s kernel: when there is no more RAM available
on the host, the kernel starts to kill processes to take back memory space. As the
Docker engine did nothing about the lack of RAM (as it has nothing to do), the kernel
did the job.
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It is also possible to see that the OOMKiller killed 4 containers on the NodeExporter
dashboard:

Figure 5.26: DOCKER-4-1: OOMKiller invocations

This experiment points out the need to specify RAM limit to workloads on a Docker
environment to avoid the kernel’s OOMKiller invocation that may kill randomly processes.
The kernel should never kill Docker containers, it is a best practice to leave this job to
the Docker engine by specifying RAM limit to workloads.
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5.4.2 Testing procedure K8S-4-1

The testing procedure K8S-4-1 is described below with associated results:

Figure 5.27: Testing procedure K8S-4-1

The experiment created for this testing procedure is the following:

wait 20
allocate 3221225472 id1 #1GB
wait 300
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To deploy many pods with the same configuration and without any RAM limit, the
following deployment has been applied to the cluster:

apiVersion: apps/v1
kind: Deployment
metadata:

name: stress-tool-deployment
spec:

replicas: 17 # > total RAM capacity as each pod allocates 1GB of RAM
selector:

matchLabels:
app: stress-tool

template:
metadata:

labels:
app: stress-tool

spec:
restartPolicy: Always # Unique allowed value
containers:
- name: stress-tool-container
image: leichap/heia-stress-tool
imagePullPolicy: Always
volumeMounts:
- name: config-volume
mountPath: /usr/src/stress-tool/config.txt

volumes:
- name: config-volume
hostPath:
path: /home/ubuntu/config.txt
type: File

Once the deployment has been applied, Kubernetes starts to schedule the pods and the
pods start to allocate GB of RAM.
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The RAM usage of the host has been monitored using the Node-Exporter Grafana
dashboard:

Figure 5.28: K8S-4-1: RAM usage of the host

Unlike Docker, Kubernetes does not use the host’s swap memory for its pods. As a
result, the amount of RAM used does not fall as it does in the Docker graph.
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When the RAM of the host is full, some pods starts to exit. As a result, and because
the only restartPolicy allowed in a deployment is Always, these pods are going to be
restarted until Kubernetes detects that they are in a "killed, restarted" loop. These
pods ends up being in the "CrashLoopBackOff" state. Each time the pod restarts,
Kubernetes increases the wait time, referred to as a “backoff delay.” Throughout this
process, Kubernetes shows the "CrashLoopBackOff" error:

NAME READY STATUS RESTARTS AGE
stress-tool-deployment-2tbdr 1/1 Running 5 (3m39s ago) 8m9s
stress-tool-deployment-5mpjt 0/1 CrashLoopBackOff 5 (14s ago) 8m9s
stress-tool-deployment-bfgct 1/1 Running 0 8m9s
stress-tool-deployment-d69q8 1/1 Running 0 8m9s
stress-tool-deployment-jvx7l 1/1 Running 1 (7m20s ago) 8m9s
stress-tool-deployment-jxjns 1/1 Running 0 8m9s
stress-tool-deployment-kmqw9 0/1 CrashLoopBackOff 4 (57s ago) 8m9s
stress-tool-deployment-l6gzf 1/1 Running 0 8m9s
stress-tool-deployment-mjpfk 1/1 Running 5 (108s ago) 8m9s
stress-tool-deployment-nk9jl 1/1 Running 2 (5m50s ago) 8m9s
stress-tool-deployment-q27b9 1/1 Running 0 8m9s
stress-tool-deployment-q7hcf 1/1 Running 1 (6m54s ago) 8m9s
stress-tool-deployment-rtk8l 1/1 Running 0 8m9s
stress-tool-deployment-slcz6 1/1 Running 0 8m9s
stress-tool-deployment-vqvs7 1/1 Running 0 8m9s
stress-tool-deployment-x2crt 1/1 Running 0 8m9s
stress-tool-deployment-xxnxm 1/1 Running 2 (50s ago) 8m9s

When using the "kubectl describe pod" to see the detailed information on a pod which
is on the "CrashLoopBackOff" state, the 137 error code appears, meaning that the
process has been killed using the SIGKILL signal:

Containers:
stress-tool-container:

Container ID: containerd://5e03a4424489226ec470545120fefdbae
Image: leichap/heia-stress-tool
Image ID: docker.io/leichap/heia-stress-tool@sha256:e85e424e84cb87e7
Port: <none>
Host Port: <none>
State: Waiting

Reason: CrashLoopBackOff
Last State: Terminated

Reason: Error
Exit Code: 137

It is also possible to use the "kubectl events" command to obtain information on last
events that occurred on the cluster. As a result, the following lines appears many times
(result truncated):

REASON OBJECT MESSAGE
SystemOOM Node/worker01 System OOM encountered, victim process:

stress-tool, pid: 3067211↪→
SystemOOM Node/worker01 System OOM encountered, victim process:

stress-tool, pid: 3067522↪→
SystemOOM Node/worker01 (combined from similar events): System OOM

encountered, victim process: stress-tool, pid: 3552340↪→
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The reason says SystemOOM, meaning that Kubernetes did not killed the pod, but the
Linux kernel did. Like the experiment on the Docker environment, Kubernetes does not
manage machine overload because pods have no memory limit. As a last resort, the
Linux kernel kills many processes to free up memory. As a result, Kubernetes relaunches
the pods that have been killed, in a loop. It is possible to check the /var/log/kern.log
on the worker node, to see the Linux kernel OOMKiller actions:

kernel: [1829337.631193] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cp ⌋
uset=/,mems_allowed=0,global_oom,task_memcg=/system.slice/containerd.servic ⌋
e/kubepods-besteffort-pode86da88c_e528_4df4_83bd_58613ea39908.slice:cri-con ⌋
tainerd:c94f17d3fe54fec2bb55d348ac24921b8576db56de4a638a54784725f0596c0b,ta ⌋
sk=stress-tool,pid=3554030,uid=0

↪→
↪→
↪→
↪→
kernel: [1829337.631213] Out of memory: Killed process 3554030 (stress-tool)

total-vm:1054232kB, anon-rss:1048788kB, file-rss:0kB, shmem-rss:0kB, UID:0
pgtables:2100kB oom_score_adj:1000

↪→
↪→

These OOMKiller invocations also appeared on the Node-Exporter Grafana dashboard,
as the following image shows:

Figure 5.29: K8S-4-1: OOMKiller invocations

To avoid these problems, it is important to define pods requests and limits as seen in the
analysis part of this report, so that the Kube-Scheduler can rely on these information to
find a node that can execute the pod without any lack of resources. When such requests
and limits are defined, Kubernetes can OOMKill pods as seen in the K8S-1-1 experiment,
which is much better than calling the Linux kernel OOMKiller. It is considered as a
best practice to always define a request field to a pod, and to set its limit to the same
value as the request.
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5.5 Test results
The table below shows the final test results:

Figure 5.30: Test results

Each test received enough data to draw conclusion. The fourth testing strategy
hypothesis were wrong, but they were not taken from any documentation.
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5.6 Other experiments driven and ideas
This section reports on various experiments carried out outside the official test cases,
and the partial conclusions drawn from them.

5.6.1 Maximal allocatable block size

When trying to allocate a block of 3GB, the instruction is not executed. The container
(respectively the pod) is not killed. It is as if the program had skipped the allocation
instruction. According to an IBM documentation, the maximal allocatable block size
for one malloc() call is 2GB[33].

23:21:43 - Starting stress tool. - vRAM:5652 kB, PhysicalRAM:1512 kB
23:21:43 - Waiting 20 seconds... - vRAM:5652 kB, PhysicalRAM:1512 kB
[MISSING INSTRUCTION HERE]
23:22:03 - Waiting 300 seconds... - vRAM:5652 kB, PhysicalRAM:1512 kB
23:27:03 - End of program. - vRAM:5652 kB, PhysicalRAM:1512 kB

5.6.2 CPU usage during allocation instructions

When deploying multiple containers and pods during the DOCKER-4-1 and K8S-4-1
experiments, the CPU usage of the hosts was very high when allocating multiple GB of
RAM. Some containers’s RAM usage was growing very slowly to 1GB, as the CPU had
to switch between multiple allocation contexts and keep updated it’s mapping table that
links virtual RAM addresses to physical ones. Here is the example for 15 containers,
each requesting 1GB of RAM on a Docker environment:

Figure 5.31: CPU usage when allocating multiple GB of RAM
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5.6.3 Ideas of experiments

Here are presented some ideas of experiments. They have not been executed by lack of
time or because they were out of the scope of the project.

• Replicating this study on managed Kubernetes cluster (Amazon EKS, GKE,
AKS...) as they may manage workloads in different ways by implementing
Kubernetes operators or other self-developed solutions.

• Perform more DOCKER-4 and K8S-4 experiments, with many configurations like
applying requests and limits to pods, trying with multiple deployments, or using
Pod Priority and Preemption objects[34].

• A secondary objective of this project was to carry out this study on different
containerisation engines. For reasons of time, this was not possible, but certain
hypotheses can be put forward.

Kubernetes

Since the version 1.20 of Kubernetes, the Docker engine has been deprecated.
This has not been a problem, because Kubernetes can still run containers built
using Docker’s Open Container Initiative (OCI) image format. It is also still able
to pull images from the Docker Hub, or other images registries that contains
Docker images.

The default containerization engine used by Kubernetes is containerd, as seen in
the analysis part of this report. Docker and containerd are very similar and there
is no apparent reason why the two engines should behave differently. In fact,
Kubernetes supports other containerisation engines such as CRI-O or Mirantis,
and makes no mention of any differences in its official documentation (with
some exceptions, as seen in the analysis part). The basic assumption is that the
behaviour of a Kubernetes cluster is engine-agnostic, and that the results obtained
in this study would be similar with another containerisation engine supported by
Kubernetes.

Docker

Such an hypothesis cannot be made for a native Docker environment, since
in principle the entire platform will be different by using another engine. It is
therefore not possible from the results obtained to make any assumptions about
the behaviour of other containerisation engines, with the exception of containerd
on which Docker is based.
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6 | Conclusion
This chapter is the final one of this report, giving the conclusions of the project, the
comparison with the initial objectives, the perspectives and a personal conclusion.

The main objectives of the project have been met, as has one of the 2 secondary
objectives. For the second, a partial response based on hypotheses was provided.
There is no doubt that many behaviours were not observed during this study and that
additional test cases can be the subject of a second study to deepen the conclusions
and discover new areas of research.

This study showed the importance for production environments to comply with the
deployment best-practices, particularly when it comes to limiting the resources accessible
to workloads, otherwise the system will randomly penalise processes or, worse still, crash.
Administrators must rely on the fact that Docker and Kubernetes are well-designed for
deploying workloads that are resources-limited.

It is also important to realise that containerised environments are complex and give
rise to a degree of uncertainty when it comes to application metrics. The various
overheads associated with complex technical stacks make it more difficult to analyse
RAM consumption than if the application were running in a relatively simple native
environment. This complexity leads to variations in metrics observed by different tools,
as seen in the DOCKER-2-3 and K8S-2-3 experiments.

On a personal note, working on this semester project has been a rewarding experience.
It was a pleasure to carry out this study on a technological subject that every IT
engineer is familiar with, but which remains fundamental. RAM is one of the most
important elements in a computer, and this study shows once again how important it is
to manage it correctly. As I said for my semester 5 project report, I sincerely hope that
this (long) report conveys the enthusiasm and interest I had to work on this study.
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A | Use case / Components diagram

Figure A.1: Use case / Components diagram
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B | CI/CD pipeline

Figure B.1: CI/CD pipeline
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C | Analysis of the parca.dev solution
The parca.dev[35] solution is an open-source project focused on continuous profiling
across IT infrastructure. It provides insights about resource usage (CPU, RAM and
others), performance bottlenecks, and debugging issues. As their documentation says,
parca’s continuous data collection is performed with minimal overhead, making it
suitable for use in production environments without affecting system performance.

Parca’s infrastructure is made of agents and a server. The agents are executed on the
monitored hosts while the server is used to store, filter and export data.

The Parca Agent uses eBPF[36] (extended Berkeley Packet Filter), a technology
for low-level data collection on Linux hosts. This allows Parca to profile system
performance with minimal impact on the system. The use of eBPF ensures that the
profiling process is efficient and capable of running continuously without significant
performance overhead.

The following image shows the RAM usage of an application on a dashboard with
Parca’s data.

Figure C.1: Example of a Parca dashboard (Parca)

An interesting blog post[37] from the creators of Parca shows a demonstration of the
tool with many information.

83





References
[1] Arith-Matic authors. ROM and RAM: An Introduction to Computer Memory.

2024. URL: https://arith-matic.com/notebook/rom-ram-comput
er-memory (visited on 05/07/2024).

[2] Wikipedia. Wikipedia: Thrashing (Computer Science). 2024. URL: https://en
.wikipedia.org/wiki/Thrashing_(computer_science) (visited on
05/07/2024).

[3] Wikipedia. Wikipedia: Virtual memory. 2024. URL: https://en.wikipedia
.org/wiki/Virtual_memory (visited on 05/07/2024).

[4] Michael Kerrisk. cgroups(7) — Linux manual page. 2024. URL: https://
man7.org/linux/man- pages/man7/cgroups.7.html (visited on
05/16/2024).

[5] Docker Inc. Docker - Understand the risks of running out of memory. 2024. URL:
https://docs.docker.com/config/containers/resource_cons
traints/#understand-the-risks-of-running-out-of-memory
(visited on 05/07/2024).

[6] Inc. Linux Kernel Organization. Kernel Chapter 13 - Out Of Memory Management.
2024. URL: https://www.kernel.org/doc/gorman/html/understa
nd/understand016.html (visited on 05/07/2024).

[7] Docker Inc. Docker - Runtime options with Memory, CPUs, and GPUs. 2024.
URL: https://docs.docker.com/config/containers/resource_c
onstraints/#limit-a-containers-access-to-memory (visited on
05/07/2024).

[8] containerd Authors. containerd - An industry-standard container runtime with an
emphasis on simplicity, robustness and portability. 2024. URL: https://cont
ainerd.io/ (visited on 05/07/2024).

[9] The Kubernetes Authors. Downward API. 2024. URL: https://kubernete
s.io/docs/concepts/workloads/pods/downward-api/ (visited on
05/07/2024).

[10] The Kubernetes Authors. Kubernetes documentation - Assign Memory Resources
to Containers and Pods. 2024. URL: https://kubernetes.io/docs/tas
ks/configure-pod-container/assign-memory-resource/#if-y
ou-do-not-specify-a-memory-limit (visited on 04/07/2024).

[11] Prometheus Authors. Prometheus - From metrics to insight. 2024. URL: ht
tps://prometheus.io/docs/introduction/overview/ (visited on
05/10/2024).

[12] Google. cAdvisor - GitHub repository. 2024. URL: https://github.com/go
ogle/cadvisor (visited on 05/10/2024).

[13] Prometheus community. Node-Exporter - GitHub repository. 2024. URL: https
://github.com/prometheus/node_exporter (visited on 05/10/2024).

[14] Grafana. Grafana - The open observability platform. 2024. URL: https://gra
fana.com/docs/grafana/latest/ (visited on 05/10/2024).

85

https://arith-matic.com/notebook/rom-ram-computer-memory
https://arith-matic.com/notebook/rom-ram-computer-memory
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://docs.docker.com/config/containers/resource_constraints/#understand-the-risks-of-running-out-of-memory
https://docs.docker.com/config/containers/resource_constraints/#understand-the-risks-of-running-out-of-memory
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://docs.docker.com/config/containers/resource_constraints/#limit-a-containers-access-to-memory
https://docs.docker.com/config/containers/resource_constraints/#limit-a-containers-access-to-memory
https://containerd.io/
https://containerd.io/
https://kubernetes.io/docs/concepts/workloads/pods/downward-api/
https://kubernetes.io/docs/concepts/workloads/pods/downward-api/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/#if-you-do-not-specify-a-memory-limit
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/#if-you-do-not-specify-a-memory-limit
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/#if-you-do-not-specify-a-memory-limit
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://grafana.com/docs/grafana/latest/
https://grafana.com/docs/grafana/latest/


References

[15] Elastic. Elasticsearch - The heart of the free and open Elastic Stack. 2024. URL:
https://www.elastic.co/elasticsearch (visited on 05/11/2024).

[16] Elastic. Filebeat - Lightweight shipper for logs. 2024. URL: https://www.el
astic.co/beats/filebeat (visited on 05/11/2024).

[17] Elastic. Kibana - Discover, iterate, and resolve with ES|QL on Kibana. 2024.
URL: https://www.elastic.co/kibana (visited on 05/11/2024).

[18] Elastic. Elastic - ELK Stack. 2024. URL: https://www.elastic.co/elas
tic-stack/ (visited on 05/11/2024).

[19] OpenStack community. OpenStack - The Most Widely Deployed Open Source
Cloud Software in the World. 2024. URL: https://docs.openstack.org
/2024.1/ (visited on 05/11/2024).

[20] Hashicorp. Terraform - Automate infrastructure on any cloud with Terraform.
2024. URL: https://developer.hashicorp.com/terraform (visited
on 04/23/2024).

[21] RedHat. Ansible - Ansible offers open-source automation that is simple, flexi-
ble, and powerful. 2024. URL: https://docs.ansible.com/ (visited on
04/23/2024).

[22] Jeison Sánchez (Growth Acceleration Partners). A Brief History of Microservices -
Part I. 2024. URL: https://medium.com/@wearegap/a-brief-histor
y-of-microservices-part-i-958c41a1555e (visited on 04/19/2024).

[23] LLC. DigitalOcean. Comparing AWS, Azure, GCP. 2024. URL: https://www
.digitalocean.com/resources/article/comparing-aws-azure-
gcp (visited on 04/24/2024).

[24] Janani Ravi. Cloud Container Services Compared – AWS vs Azure vs GCP. 2023.
URL: https://www.pluralsight.com/resources/blog/cloud/clo
ud-container-services-compared-aws-vs-azure-vs-gcp (visited
on 04/24/2024).

[25] Cody Slingerland. AWS Vs. Azure Vs. Google Cloud: Which One Should You
Use? 2023. URL: https://www.cloudzero.com/blog/aws-vs-azure
-vs-google-cloud/ (visited on 04/24/2024).

[26] Ubuntu MOTU Developers. Ubuntu Package: stress (1.0.4-6) [universe]. 2024.
URL: https://packages.ubuntu.com/focal/stress (visited on
05/07/2024).

[27] progrium. Docker-Stress GitHub repository. 2024. URL: https://github.c
om/progrium/docker-stress (visited on 05/07/2024).

[28] Martin Roch-Neirey. PS6-MRN-Tech GitLab repository. 2024. URL: https://g
itlab.forge.hefr.ch/ps6-martin-roch-neirey/ps6-mrn-tech
(visited on 01/31/2024).

[29] "Tim" and "Stephen Kitt" StackExchange users. Which process is ‘/proc/self/‘
for? 2024. URL: https://unix.stackexchange.com/questions/333
225/which-process-is-proc-self-for (visited on 05/07/2024).

[30] Michael Kerrisk. proc(5) — Linux manual page. 2024. URL: https://man7
.org/linux/man-pages/man5/proc.5.html (visited on 05/07/2024).

86

https://www.elastic.co/elasticsearch
https://www.elastic.co/beats/filebeat
https://www.elastic.co/beats/filebeat
https://www.elastic.co/kibana
https://www.elastic.co/elastic-stack/
https://www.elastic.co/elastic-stack/
https://docs.openstack.org/2024.1/
https://docs.openstack.org/2024.1/
https://developer.hashicorp.com/terraform
https://docs.ansible.com/
https://medium.com/@wearegap/a-brief-history-of-microservices-part-i-958c41a1555e
https://medium.com/@wearegap/a-brief-history-of-microservices-part-i-958c41a1555e
https://www.digitalocean.com/resources/article/comparing-aws-azure-gcp
https://www.digitalocean.com/resources/article/comparing-aws-azure-gcp
https://www.digitalocean.com/resources/article/comparing-aws-azure-gcp
https://www.pluralsight.com/resources/blog/cloud/cloud-container-services-compared-aws-vs-azure-vs-gcp
https://www.pluralsight.com/resources/blog/cloud/cloud-container-services-compared-aws-vs-azure-vs-gcp
https://www.cloudzero.com/blog/aws-vs-azure-vs-google-cloud/
https://www.cloudzero.com/blog/aws-vs-azure-vs-google-cloud/
https://packages.ubuntu.com/focal/stress
https://github.com/progrium/docker-stress
https://github.com/progrium/docker-stress
https://gitlab.forge.hefr.ch/ps6-martin-roch-neirey/ps6-mrn-tech
https://gitlab.forge.hefr.ch/ps6-martin-roch-neirey/ps6-mrn-tech
https://unix.stackexchange.com/questions/333225/which-process-is-proc-self-for
https://unix.stackexchange.com/questions/333225/which-process-is-proc-self-for
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html


References

[31] The Kubernetes Authors. Metrics Server. 2024. URL: https://kubernetes
.io/docs/tasks/debug/debug-cluster/resource-metrics-pipe
line/#metrics-server (visited on 05/07/2024).

[32] The Kubernetes Authors. Tools for Monitoring Resources. 2024. URL: https:
//kubernetes.io/docs/tasks/debug/debug-cluster/resource-
usage-monitoring/ (visited on 05/07/2024).

[33] IBM Corporation. malloc() — Reserve Storage Block. 2024. URL: https://w
ww.ibm.com/docs/en/i/7.3?topic=functions-malloc-reserve-
storage-block (visited on 05/07/2024).

[34] The Kubernetes Authors. Pod Priority and Preemption. 2024. URL: https://k
ubernetes.io/docs/concepts/scheduling-eviction/pod-prior
ity-preemption/ (visited on 05/07/2024).

[35] Parca contributors. Parca - Open Source infrastructure-wide continuous profiling.
2024. URL: https://www.parca.dev/ (visited on 05/07/2024).

[36] eBPF.io authors. eBPF - Dynamically program the kernel for efficient networking,
observability, tracing, and security. 2024. URL: https://ebpf.io/ (visited
on 05/02/2024).

[37] Sumera Priyadarsini. Introduction to Parca - Part 1. 2024. URL: https://www
.polarsignals.com/blog/posts/2022/07/12/introducing-parc
a-sequel (visited on 05/07/2024).

87

https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/#metrics-server
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/#metrics-server
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/#metrics-server
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://www.ibm.com/docs/en/i/7.3?topic=functions-malloc-reserve-storage-block
https://www.ibm.com/docs/en/i/7.3?topic=functions-malloc-reserve-storage-block
https://www.ibm.com/docs/en/i/7.3?topic=functions-malloc-reserve-storage-block
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://www.parca.dev/
https://ebpf.io/
https://www.polarsignals.com/blog/posts/2022/07/12/introducing-parca-sequel
https://www.polarsignals.com/blog/posts/2022/07/12/introducing-parca-sequel
https://www.polarsignals.com/blog/posts/2022/07/12/introducing-parca-sequel




Glossary
Docker Platform that deploys and manages applications within lightweight, portable

containers. 2

Infrastructure as Code Practice where the management and provisioning of comput-
ing infrastructure are automated and managed using code and software develop-
ment techniques, rather than through manual processes. 13

Kubernetes Orchestrator used to deploy scalable workloads as containers. 2

OpenStack Open-source cloud computing platform that provides a set of software
tools and components to build and manage public and private cloud infrastructure.
13

Random Access Memory Computer memory that provides fast, temporary storage
for data and instructions that a computer’s processor needs to access quickly. 2

SIGKILL Signal used in Unix-like operating systems to forcefully terminate a process
immediately without allowing it to perform any cleanup operations. 8

SIGTERM signal used in Unix-like operating systems to gracefully terminate a process,
allowing it to perform cleanup operations before exiting. 8

TSDB Time Series Database. 12
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