L

=, | Haute école d’ingénierie et d’architecture Fribourg

rﬁ

Haute école d'ingénierie et d'architecture Fribourg
Bd de Pérolles 80
CH-1700 Fribourg, Switzerland

TECHNISCHE
. UNIVERSITAT
BERLIN

Technische Universitét Berlin
StraBBe des 17. Juni 135
10623 Berlin, Germany

Bachelor of Science HES-SO in Engineering

Department: Computer Science and Communication Systems

Carbon-aware spatiotemporal workload shifting
using FLUIDOS

Author:

Martin Roch-Neirey

Under the supervision of:
Sébastien Rumley

Viad Coroama

Nasir Asadov

Matthias Finkbeiner

Expert:
Pascal Felber

Written as part of a bachelor thesis

Fribourg, HES-SO//Bachelor, August 2, 2024
Version: 1.0

Version history

Version Date Modification

0.0.0 2024.05.27 Document creation

0.0.1 2024.06.10 Analysis

0.0.2 2024.06.23 Introduction

0.0.3 2024.07.16 Carbon-aware scheduling algorithm
0.0.4 2024.07.20 Implementation

0.0.5 2024.07.31 Conclusion, implementation

0.0.6 2024.08.01 Implementation

1.0 2024.08.02 Final review before submission

Table 1: Version history

Acknowledgements

First and foremost, | would like to express my sincere gratitude to Sébastien Rumley,
my thesis advisor, for having given me the chance to obtain this topic for my Bachelor's
thesis, for his continuous support, his confidence, and his many pieces of advice.

| would also like to thank my other main supervisor, Vlad Coroama, for his support
throughout the duration of my thesis. The numerous discussions during our meetings
provided me critical reflections and guidance that greatly enhanced the quality of my
work. | am particularly grateful for his meticulous review of my final report, which
significantly contributed to its clarity and comprehensiveness.

| am also grateful to Stefano Braghin, research engineer and technical lead at IBM
Research, for his invaluable help and willingness to iron out bugs and add new features
to the framework within which the algorithm was developed.

My deep appreciation also goes to Matthias Finkbeiner, who provided me with an
opportunity to join his team as a collaborator.

| am also grateful to the Chair of Sustainability (SEE - TU Berlin) for providing me
with the necessary resources and pleasant environment for my work.

Finally, | would like to extend my heartfelt thanks to Nasir Asadov, research associate
at SEE and one of my supervisors, who worked closely with me every day during my
nine-week-long bachelor thesis. His constant support, guidance, and collaborative spirit
were instrumental in the completion of this work. The time and effort he dedicated to
assisting me and answering my questions were really helpful.

Contents

Version history

Acknowledgements

Contents

List of Figures

List of Tables

List of Equations

1

Introduction

1.1 Context
1.2 Objectives
1.3 Structure and information about this report

Analysis
2.1 The FLUIDOS project
2.2 Reference architecture

Carbon-aware scheduling algorithm
3.1 Motivation L
3.2 Design of the algorithm

Implementation

4.1 FLUIDOS remote workload scheduling demonstration
4.2 Development of the algorithm within the FLUIDOS architecture

4.3 Demonstration of the MBMO and the carbon-aware scheduler

4.4 Development of an algorithms simulator
45 Otherworkdone

Conclusion

5.1 Global overview
52 Nextsteps
5.3 Personal feedbacko
5.4 HES-SO legal information

Actors and work packages of the FLUIDOS project

Draft of a research paper

vii

ix

ix

AWR K

[OX NN &,]

10

15
16
16

22
23
27
38
41
44

45
45
46
47
47

48

50

Vi

Contents

References

Glossary

vili

51

53

List of Figures

1.1 Basic representation of a FLUIDOS cluster 2
2.1 Multiple Kubernetes clusters with established peering sessions 6
2.2 Visual representation of a FLUIDOS cluster components 9
2.3 Components of a FLUIDOS node 10
2.4 Example of a 2 nodes FLUIDOS cluster 11
2.5 Workflow example - Step 1: Resource detection and creation 13

3.1 The algorithm selects the best combination of a timeslot and a node, so

that the emissions are as low as possible 17
3.2 The forecasted data are reorganised in 2 hours timeslots 18
4.1 Architecture set up for the basic FLUIDOS demonstration 23

4.2 Result of the command “ligoctl status peer”, showing the peering session
between the consumer and provider clusters 25

4.3 Environment of execution and components diagram of the algorithm within

the FLUIDOS architecture 28
4.4 Data model used by the carbon-aware scheduler 29
4.5 FLUIDOS cluster used for the MBMO demonstration 38
4.6 Output of the algorithm simulator. Values in cells are in gCO> 42

List of Tables

1 Version history i
Al Listofactors 48
A.2 List of work packages 49

List of Equations

List of Equations

3.1 Operational emissions calculation 3.1 19
3.2 Embodied emissions calculation 3.2. 19
3.3 Objective function 3.3 20
3.4 Scheduling constraint 3.4 20
3.5CPU constraint 3.5 20
3.6 RAM constraint 3.6 L 20
3.7 Utilisation constraint 3.7 20
3.8 Deadline constraint 3.8 20

1

1.1

Introduction

This manuscript documents the Bachelor’s thesis of Martin Roch-Neirey from the Haute
Ecole d'Ingénierie et d'Architecture of Fribourg, entitled “Carbon-aware spatiotemporal
workload shifting using FLUIDOS".

Context

As part of the Horizon Europe funding program [1] created in 2021, the FLUIDOS?
project [2] aims to create a flexible, decentralised and secured computing continuum.
The project envisages the use of “liquid computing” as a continuum of resources and
services enabling the transparent and efficient deployment of applications, independently
of the underlying infrastructure. To do so, the technical implementation is based on
Kubernetes [3] and LIQO [4], an open-source project developed at POLITO (Politecnico
di Turino). Kubernetes is a well-known workload orchestrator used worldwide, while
LIQO is used to share resources across multiple Kubernetes clusters, allowing workload
shifting between them.

The aim of the project is to allow multiple Kubernetes clusters to be seen as one
FLUIDOS cluster, where each Kubernetes cluster represents a FLUIDOS node. This
FLUIDOS cluster, composed of multiple Kubernetes clusters, can then execute all
types of workloads with the ability to schedule and shift them across multiple loca-
tions. The computing continuum allows anyone to join and quit, independently of
the computing capacity (most of the time expressed in floating points operations per
second - FLOPS) available on each system. A FLUIDOS cluster can then be made of
multiple Internet-of-Things (loT) devices, managed Kubernetes clusters using public
cloud providers, and on-premise Kubernetes clusters. It also allows the use of different
Kubernetes implementations and overlays like K3s, MiniKube, or KubeEdge.

'Flexible, scalable and secUre decentrallzeD Operating System

Chapter 1. Introduction

The figure 1.1 shows a basic representation of a FLUIDOS cluster with different
Kubernetes distributions and hardware.

FLUIDOS Cluster

FLUIDOS Node FLUIDOS Node FLUIDOS Node FLUIDOS Node
Kubernetes KubeEdge
Master Node Master Node Kubernetes
K3s Managed Cluster
Single Node (Amazon EKS,
Google GKE...)
Kubernetes KubeEdge
Worker Node Worker Node

LIQO offers peer-to-peer connections and resources sharing across Kubernetes clusters

Figure 1.1: Basic representation of a FLUIDOS cluster

Within FLUIDQOS, as part of the “Cost-effective and energy-aware infrastructure” work
package, the Chair of Sustainable Engineering (SEE) institute of the Technische
Universitat Berlin (a.k.a. TUB or TU Berlin) is developing a computing model that
focuses on optimising energy consumption, carbon emissions, and costs. After optimising
the energy consumption per unit load, further carbon optimisations can be achieved
through strategic workload scheduling, leveraging the spatial and temporal variations in
the carbon intensity of electricity. By scheduling tasks during periods or in locations
where the grid is powered by low-carbon sources such as renewables, the carbon
footprint of pod execution can be significantly lowered. This strategy requires scheduling
algorithms that can predict the availability of low-carbon electricity and resources and
dynamically adjust workloads scheduling to align with these optimal periods [5].

Such algorithms have been designed during the last months at the TUB. This project
aimed to implement, benchmark, give feedback and improve those algorithms within
the FLUIDOS architecture. In addition to this aspect, this project also proposes to
evaluate and test the FLUIDOS documentation and architecture by installing it locally
and using it as a user might.

1.2 Objectives

1.2 Objectives

The main objectives of this project are:

1. Demonstrate that FLUIDOS can be remotely installed on computers located at
HEIA-FR or locally on a laptop and:

(a) Test and provide feedback on the FLUIDOS documentation.

(b) Compare this installation with other existing installations (Politecnico di
Torino - POLITO, TUB...).

(c) Demonstrate the capability of FLUIDOS by realising a demonstration of a
workload shifting from one location to another.

2. Clarify and document the FLUIDOS API thru which a scheduling algorithm can:
(a) Interrogate the status of various FLUIDOS locations.

(b) Schedule jobs across these locations,.

3. Implement a spatiotemporal shifting algorithm that considers the carbon embodied
during production in FLUIDOS using the above APl and benchmark this algorithm.

In addition to these key objectives, three secondary objectives have been further defined
on a “nice-to-have” basis, and remaining capacity after achieving the main objectives
permitting:

e Compare the results of the spatiotemporal algorithm with other existing FLUIDOS
scheduling algorithms (cost- and latency-effective for example).

e Analyse the carbon- and energy-impact of moving the data needed by the job,
and compare with carbon- and energy-savings realised on the compute side.

e Compare the benefits of moving a workload toward green energy with the benefits
of moving green energy toward a workload.

1.3

Chapter 1. Introduction

Structure and information about this report

This report is organised in 5 chapters, from the introduction to the conclusion:

The first chapter introduces the thesis, with the context, objectives, and the structure
of the report. The second chapter analyses the FLUIDOS architecture and provides
a simplified explanation of the project components. Certain elements are deliberately
simplified throughout this report as they are not the main elements of this thesis. The
third chapter explains the motivation and the design of the carbon-aware scheduling
algorithm developed within the FLUIDOS architecture. The chapter 4 explains how
the algorithm has been developed and also explains how a simple simulator has been
developed to test the algorithms easily. Finally, the chapter 5 concludes this thesis and
gives the possible next steps.

At the beginning of each chapter, its structure is explained. Some of the technical
vocabulary is explained in the glossary at the end of this document. Each word inserted
in the glossary is underlined the first time it appears in the document.

This report was written by hand with partial translation assistance from DeeplL and local
formulation assistance from ChatGPT (GPT-4 and GPT-40 models). A declaration of
honour made by the author is available at the end of the conclusion chapter.

2 people will be mentioned several times in this report:

e Nasir Asadov (nasir.asadov@tu-berlin.de), a doctoral student at Tech-
nische Universitat Berlin and main designer of the algorithm.

e Stefano Braghin (STEFANOB@ie.ibm.com), research engineer and technical
lead at IBM Research, who mainly developed the model-based meta-orchestrator
framework in which the algorithm has been developed and executed.

Analysis

This chapter introduces in details the FLUIDOS project, starting with the definition of
the computing continuum and the vision, terminology, and context of this thesis within
the project.

The second part explains the most important components and workflows of the FLUI-
DOS architecture related to this bachelor thesis.

Contents

2.1 The FLUIDOS project o i i e et e e e e e e e e e 6
2.1.1 The computing continuum and vision 7
2.1.2 Terminology 8
2.1.3 Context of this thesis within the project 10

2.2 Reference architecture 10
221 FLUIDOS node 10
2.2.2 Model-based meta-orchestrator L. 12
2.2.3 Simplified workflow example L. 13
2.2.4 Existing installation L 14

2.1

Chapter 2. Analysis

The FLUIDOS project

This section focuses on the analysis of the whole FLUIDOS project, from its computing
continuum to its components, API, and terminology. The main purpose of this analysis
is not to provide a complete description of the FLUIDOS project, but more to explain
general concepts and key components that are used in this project.

The main goal of the FLUIDOS project is to provide a way to connect multiple
Kubernetes clusters together, which are maintained by different entities, thereby allowing
them to share their resources and use them more efficiently. Any type of Kubernetes
distribution may join the continuum, provide resources, and use resources from others.
Within the continuum, each Kubernetes cluster has to establish a peering session with
other clusters to discover the resources they have.

Kubernetes cluster Kubernetes cluster
« >
A A
< >
Kubernetes cluster Kubernetes cluster

<4——p Peering session

Figure 2.1: Multiple Kubernetes clusters with established peering sessions

In the Figure 2.1, the computing continuum is represented as a fully meshed network
using 4 clusters. Each cluster has a peering session with all others.

2.1.1

2.1 The FLUIDOS project

The FLUIDOS project is based on the “consumer/provider” and “contracts” principles.
Each cluster can consume resources from another one by buying its resources using a
contract, and provide its own resources to all others. This is useful when all clusters do
not have the same specifications and resources (e.g., some may have GPUs, some others
may have a better network connectivity). The contracts are created and negociated
using a new protocol developed within the FLUIDOS project: the REAR (REsource
Advertisement and Reservation) protocol [6].

The computing continuum and vision

This part explains the difference between FLUIDOS' computing continuum and other
similar concepts. With today's technology, various forms of computing continuums
already exist with multiple applications that rely on different components executed at
different locations (e.g. with the data gathered at the edge, aggregated at the telco
cloud, and processed in the cloud). Anyway, these IT continuums have a number of
shortcomings that FLUIDOS can help to resolve:

e Deployment transparency: \When deploying a microservices application, it is
required to specify for each component the location it must be executed (at
the edge, in the cloud...). This makes it more difficult to shift workloads across
different locations, as it requires the presence of an overarching orchestrator
that re-deploys all the components to their new locations. The FLUIDOS intent-
based interface aims to schedule workloads to the best location and also provides
dynamic optimizations if needed.

e Communication transparency: The communication between multiple micro-
services may be configured differently whether they are in the same Kubernetes
cluster or not. For example, 2 pods can communicate within the same cluster
using their ClusterlP object reference, but if they are on separated clusters they
have to use other objects to communicate (for example using a NodePort or a
LoadBalancer object). Therefore, services must be explicitly configured to talk to
each other based on their respective location. This complicates a lot the possibility
to redeploy workloads to different clusters, as the inter-workload communication
configuration would not work anymore. With FLUIDOS, all communications
between microservices are going through the FLUIDOS virtual network fabric,
which guarantees seamless communications independently from the location of
each microservice. Therefore, the configuration would be the same regardless of
the location of the pods.

e Resource availability transparency: With the current technology, a workload
can only use the resources available in its own Kubernetes cluster, even if other
resources are available at another location of the continuum. This can lead to a
service disruption because of a lack of resources on a specific Kubernetes cluster,
while other clusters still have available resources. The FLUIDOS project exposes
the available resources of each cluster to the others, so that a workload can be
schedules or shifted from one cluster to an other, depending on the resources
utilisation and requests.

2.1.2

Chapter 2. Analysis

The FLUIDOS project aims to provide a multi-ownership decentralised computing
continuum where workloads can be scheduled using intents. The “fluid” term is used
in reference of the idea that members can join and leave the continuum at any time,
independently of their computing resources. The computing continuum can be made
of loT devices, data centres, personal devices, and evolve days after days.

Terminology

The FLUIDOS project uses numerous terms that are similar with Kubernetes-related
environments, and this section aims to define each term so that the rest of the document
is clearly understandable. Note that this part only focuses on FLUIDOS-related terms.
A more general glossary is available at the end of the document.

The following terms are defined as follows:

o A Kubernetes node is a worker machine inside a Kubernetes cluster. It may be
a virtual or a physical machine. A Kubernetes node can execute multiple pods.

o A Kubernetes cluster is a set of Kubernetes nodes that run containerized work-
loads, seen as pods. A Kubernetes cluster can be set up on different environments
using multiple distributions (Kubernetes, K3s, MiniKube, KubeEdge...). Each of
these distribution has specificities and rely to specific use cases.

e A FLUIDOS node is a unique computing environment composed of a single
of multiple machines. A FLUIDOS node is orchestrated by a single Kubernetes
control plane, so it can be seen as one Kubernetes cluster. As this is a Kubernetes
cluster, a FLUIDOS node includes a set of resources (CPU, RAM, storage,
networking, GPU cards...) that can be shared with other FLUIDOS nodes.

e A FLUIDOS domain consists of FLUIDOS nodes within the same administrative
domain that have established peering relationships. Within this domain, one
of the FLUIDOS nodes is designated as the master, known as the FLUIDOS
supernode. The FLUIDOS domain utilises the same interfaces as the FLUIDOS
nodes to present their combined information, facilitating hierarchical interactions
between different domains.

e A FLUIDOS supernode is a FLUIDOS node that serves as the "master” for
an entire FLUIDOS domain. It establishes peering relationships on behalf of all
nodes within the domain with third-party nodes and acts as the “aggregator” of
resources and services for the entire FLUIDOS domain.

e Finally, a FLUIDOS cluster is a virtual environment that spans a set of FLUIDOS
nodes, even if they belong to different administrative domains. Within this cluster,
all Kubernetes objects (such as pods, services, secrets, configmaps, etc.) are
available just as they would be in a traditional physical cluster. This setup allows
running objects, like microservices, to directly access the computing, storage, and
network resources and services allocated to the virtual cluster by each participating
FLUIDOS node, without any technical or administrative boundaries.

2.1 The FLUIDOS project

This terminology is visually shown in the Figure 2.2:

FLUIDOS Cluster

FLUIDOS Domain FLUIDOS Domain
FLUIDOS SuperNode FLUIDOS SuperNode
Kubernetes Kubernetes
Master Node Worker Node Kubernetes
Managed Cluster
(Amazon EKS,
Google GKE...)
FLUIDOS Node
K3s
Single Node FLUIDOS Node
Kubernetes
FLUIDOS Node Managed Cluster
(Amazon EKS,
Google GKE...)
KubeEdge KubeEdge
Master Node Worker Node

Figure 2.2: Visual representation of a FLUIDOS cluster components

Note that a FLUIDOS node can be made of any type of Kubernetes cluster, including
MiniKube, K3s, or managed clusters in the public cloud. All these clusters are seen as
FLUIDOS nodes and build together a computing continuum.

There are also other terms that are not shown in this image but still used in the
FLUIDOS project:

e The REAR (REsource Advertisement and Reservation) protocol is designed to
address the complexities of managing resources within a computing continuum. It
provides standardized interfaces for interoperability, optimizes resource allocation,
and ensures security for workload execution.

e In the context of the REAR protocol, a Flavor refers to a set of information
describing various kinds of computing resources that can be advertised and
reserved. In the FLUIDOS project, a flavor can be seen as a Kubernetes worker
node with its technical specifications (CPU, RAM...). In the future, multiple
types of flavors will exist (Kubernetes slice, sensors...).

2.1.3

2.2

2.2.1

Chapter 2. Analysis

Context of this thesis within the project

The FLUIDOS project is being developed by 16 different entities spread over 10 work
packages. The different entities and work packages are listed in the Appendix A. Some
actors from this list are mentioned in this report, such as the Fondazione Bruno Kessler
(FBK) that is working on multiple work packages, including the WP6.

This project was carried out as part of work package 6 of FLUIDOS, called "Cost-
effective and energy-aware infrastructure”, in close conjunction with work package 4
‘Intent-based decentralised FLUIDOS continuum’. The algorithm was developed using
the framework [7] provided by WP4 (later called “Meta-Orchestrator”).

Reference architecture

This section aims to explain how the FLUIDOS architecture is designed and what
components are inside. Some components may be excluded from a detailed description,
as they are not directly concerned by this thesis.

FLUIDOS node

Each FLUIDOS node (which technically represents a Kubernetes cluster) has different
components, as shown in the Figure 2.3:

FLUIDOS Node
Local Resource Meta-Orchestrator
Manager
REAR Controller REAR Manager
. Peerin
Discovery Solver Candida?es
a5 Manager Controller
5
©
G Contract Allocation Available
Manager Controller Resources
LIQO

Figure 2.3: Components of a FLUIDOS node

10

2.2 Reference architecture

There are 4 internal components, and 2 types of data that are stored on each node:

The Local Resource Manager is in charge of managing the local resources of
the current node. It maps resources (such as Kubernetes worker nodes) into
flavors. These flavors are then stored as Available resources. Flavors are stored
in the Kubernetes cluster as CRs.!

e The REAR Manager is in charge of managing the requests for resources. It is

considered as the central and core component of the FLUIDOS node. The Solver
Controller is a sub-component used to follow the resources requests active at any
time, while the Allocation Controller is the sub-component that interacts with
LIQO to ensure peering.

e The REAR Controller is in charge of communicating with other FLUIDOS nodes

through the REAR protocol. The Discovery Manager is in charge pf searching
other suitable FLUIDOS nodes. These nodes are stored as Peering Candidates
on the local node. The Contract Manager manages the flavors that are reserved
and bought through the REAR protocol by other nodes. Finally, the Gateway
implements an HT TP client and an HT TP server, as well as the REAR protocol.

e The Meta-Orchestrator, also known as model-based meta-orchestrator, is ex-

The
FLU

plained in detail in Section 2.2.2 below.

LIQO underlay is used to establish the peering and communication between
IDOS nodes for the scheduling and pod execution part. As LIQO is well integrated

in the FLUIDOS architecture, there is a guarantee that it shows and shares the exact

amo

unt of resources previously traded between the FLUIDOS nodes using the REAR

protocol.9

These components are replicated over all FLUIDOS nodes. Each node directly interacts

with
Figu

LIQO to establish peering and communication with other nodes, as shown on the
re 2.4 representing a 2 nodes FLUIDOS cluster:

FLUIDOS Node FLUIDOS Node
pocaliosouce Meta-Orchestrator pocallficsouies Meta-Orchestrator
Manager Manager
REAR Controller REAR Manager REAR Controller REAR Manager
Peerini Peerin
Discovery Solver Candida?es Discovery Solver Candidatges
& Manager Controller & Manager Controller
3 5
© ©
O Contract Allocation Available G} Contract Allocation Available
Manager Controller Resources Manager Controller Resources
LIQO

Figure 2.4: Example of a 2 nodes FLUIDQOS cluster

A CR (custom resource) is an extension of the Kubernetes API that is not necessarily available in
a default Kubernetes installation.

11

2.2.2

Chapter 2. Analysis

Model-based meta-orchestrator

The model-based meta-orchestrator is the component in charge of scheduling workloads
on the FLUIDOS continuum based on requests it receives. Those requests are called
intents, and provide information on how the workload should be executed and which
scheduling algorithm should be used (e.g., latency-aware or carbon-aware). It is inside
this component that the carbon-aware scheduling algorithm is developed.

When a job is submitted to FLUIDQOS, a component of the architecture is called to
choose the best FLUIDOS node and flavor to execute it. This component is called the
Meta-Orchestrator and is executed as an operator on each FLUIDOS node (meaning
this is a Kubernetes Operator executed on each cluster).

The Meta-Orchestrator decides which specific flavor and related PeeringCandidate
to buy using the REAR protocol. This choice is made using the logic of the model
chosen when submitting the job to FLUIDOS. Multiple algorithms exists for specific
purposes. For example, an algorithm tries to avoid latency between 2 locations by
choosing flavors and peering candidates with the best bandwidth available, and spatially
near from each other.

The main purpose of this bachelor thesis is to develop a carbon-aware scheduling
algorithm that will be implemented as part of the FLUIDOS meta-orchestrator. Each
algorithm can rely on metrics gathered by the flavors and PeeringCandidates to choose
wisely the final location of the job.

12

2.2.3

2.2 Reference architecture

Simplified workflow example

The Figure 2.5 presents a simplified workflow of a node executing FLUIDOS in a cluster,
and having a job submitted on it. Note that this version represents a simplified view of

the overall workflow.

1. When a FLUIDOS node is turned on, the Local Resource Manager detects the
Kubernetes nodes labeled as FLUIDOS workers and maps each node into a
flavor. These flavors become the “Available Resources” of the FLUIDOS node.

FLUIDOS Node

Local Resource
Manager

Creates and stores 2 flavors:
—— - Flavor 1 (from Node 1): 32 CPU cores / 128 GB RAM ——»
- Flavor 2 (from Node 2): 16 CPU cores / 32 GB RAM

Available
Resources

Kubernetes Worker Node 1

Labels:
- node-role.fluidos.eu/worker: "true"

Specifications:
- CPU: 32 cores
- RAM: 128 GB

Kubernetes Worker Node 2

Labels:
- node-role.fluidos.eu/worker: "true"

Specifications:
- CPU: 16 cores
- RAM: 32 GB

Kubernetes Worker Node 3

Labels:
- node-role.fluidos.eu/worker: "false"

Specifications:
- CPU: 32 cores
- RAM: 64 GB

Figure 2.5: Workflow example - Step 1: Resource detection and creation

As the Figure 2.5 shows, this process is executed on each FLUIDOS node at the
startup. Each node is responsible for its own local flavors, and can reserve and
buy remote ones using the REAR protocol.

. The user of FLUIDOS can then use the kubectl FLUIDOS plugin to push new

jobs on the FLUIDOS cluster. The user writes an intent, which represents a

written declaration of what it wants to have in the cluster. An intent example is

shown below (truncated):

apiVersion: apps/vl
kind: Deployment
metadata:
annotations:
fluidos-intent-deadline
labels:
app.kubernetes.io/name:
spec:
replicas: 1
selector:
matchLabels:
name: intent-operator
template:
metadata:
labels:

. oM

"intent-example"

13

Chapter 2. Analysis

name: intent-operator
app.kubernetes.io/name: "intent-example"
spec:
containers:
- name: intent-example-container
image: "foo/bar"
command:
- /hello-world

Note the FLUIDOS-specific annotations, specifying what the user wants. In this
case, the pod must be started within the next 12 hours. This intent can then be
sent to the cluster with the following command:

kubectl fluidos -f +dintent-example.yaml

. Once the intent is processed by the kubectl FLUIDOS plugin, the Meta-

Orchestrator is called to select the appropriate scheduler model, depending on
the intents of the user.?

4. When the model has been chosen, the algorithm developed within this model

executes its logic and outputs as a result the required resources and specifications
to schedule the pod. For example, the algorithm may output a specific flavor that
is low-latency. In the context of this project, the algorithm outputs a flavor and
a delay, defining the location and time where and when the pod will be executed.

. The FLUIDOS resources are then reserved, purchased and ready to execute the

pod using the REAR protocol. The pod is then scheduled on the selected resource
using LIQO.

2.2.4 Existing installation

During this project, 2 different installations have been setup locally. These FLUIDOS
installations are explained in details in the 2 demonstration of this report: the 4.1 “FLU-
IDOS remote workload scheduling demonstration” section and the 4.3 “Demonstration
of the MBMO and the carbon-aware scheduler” section.

An objective of this project (1.b) was to compare these installations with other existing
ones (at POLITO, TUB...). After some discussions with POLITO engineers and others
involved in the project, it became clear that there was no definitive FLUIDOS cluster
yet. All development is being carried out using KinD to simulate clusters locally. In the
final days of the project, discussions were held to start preparing for the deployment of
FLUIDOS on an initial physical infrastructure using RaspberryPi.

2This functionality is not fully implemented yet and the model must be chosen by hand in the code.

The WP4 responsibles are still working on this feature.

14

Carbon-aware scheduling algorithm

This chapter explains in detail how the carbon-aware scheduling is designed and what
problem it tries to solve. The first part explains the motivation of designing such an
algorithm, and the second part explains the problem and dives into detailed explanations.

The algorithm is explained from a theoretical point of view with the definition of the
optimisation problem and definitions, and then presented in pseudo-code.

Contents

3.1 Motivation e e e e e 16

3.2 Designofthealgorithm 16
3.2.1 Problem definition 16
3.2.2 Definitions 19
3.2.3 Carbon Emissions Calculation 19
3.2.4 Objective Function 20
3.25 Constraints 20
3.2.6 Deadline Constraint 20
3.2.7 Algorithm 21

15

3.1

3.2

3.2.1

Chapter 3. Carbon-aware scheduling algorithm

Motivation

The “Motivation” section has been written in close connection with the work carried
out before the start of the thesis. This previous work was mainly carried out by Nasir
Asadov (nasir.asadov@tu-berlin.de).

The motivation behind developing a carbon-aware scheduling algorithm is driven by the
rising energy demand and corresponding carbon footprint of computing [8]. As trends
like Al, 10T, streaming, and the shift towards cloud and edge computing increase [9], the
energy consumption and environmental impact of data centres have grown significantly.
Traditional hardware efficiency gains [10] are no longer sufficient to offset this increase,
necessitating new paradigms for energy- and carbon-efficient computing. The primary
goal is to devise strategies that can reduce the carbon footprint of computation
without compromising performance, through methods such as deploying energy-efficient
computing resources and utilising low-carbon electricity sources.

One effective approach to reducing the carbon footprint in distributed systems is through
carbon-aware computing [11], which involves shifting computing loads in space and time
to leverage periods of low-carbon electricity availability. This strategy, known as carbon-
aware workload scheduling, focuses on minimising the carbon emissions associated with
the operation of computational tasks by aligning their execution with times or locations
where renewable energy is more prevalent. Unlike traditional scheduling methods that
prioritise performance metrics like speed [12] and resource utilisation [13], carbon-aware
scheduling integrates environmental considerations by prioritising tasks based on the
varying carbon intensity of the electricity grid.

Design of the algorithm

This section explains what problem the algorithm tries to solve, and also presents it in
pseudo-code.

Problem definition

The problem can be seen as a NP-complete mixed-integer linear problem. The goal
is to minimise the total carbon footprint of workloads by optimally scheduling them
across geographically distributed nodes and timeslots. The carbon footprint consists of
operational emissions and embodied emissions.

The algorithm must ensure that for each case (combination of timeslot and node), the
node will be able to execute the pod with its own resources that are still available, and
that the timeslot is acceptable for the pod (meaning the timeslot starts before, or at
least at the same time as the deadline defined in the intent request file of the pod).

16

3.2 Design of the algorithm

Below is shown a visualisation of the problem:

450 193 145 178

FLUIDOS Node 3 gCo2eq gCerq gCO2eq gCO2eC|

N
sx\%\\

325 47 788
FLUIDOS Node 2 gCo2eq gCo2eq gCo2eq
137 125 450 120
FLUIDOS Node 1 gCo2eq gCo2eq gCo2eq gCo2eq
A
: TS 1 TS 2 TS 3 | TS 4 TS5
| >
. Time Slots
Intent received Pod start deadline

Figure 3.1: The algorithm selects the best combination of a timeslot and a node, so
that the emissions are as low as possible

In the example presented in the Figure 3.1, the timeslot no. 5 is not valid because it
starts after the deadline of the pod. The combination [TS2; FLUIDOS node 2] is
considered as the best solution regarding the carbon emission problem. The algorithm
still has to ensure that the node can handle the pod on this timeslot with its own
resources.

Assuming that each timeslot is 2 hours long and the datasource for the carbon intensity
forecast outputs 1 hour long timeslots, the average of 2 consecutive forecasted data
can be considered for each timeslot of the algorithm. The goal is then to select the
lowest possible value for each location, and compare them while ensuring that the node
will be able to handle the pod.

17

Chapter 3. Carbon-aware scheduling algorithm

The way the algorithm translates the forecast that comes from the Electricity Maps
API to usable data is shown below.

For each location, find best value in this list
e

| 75 | 70 | 56 | 69 | |
Timeslots | 42 | 90 | 61 | 39 | |

Hourly forecast 34 50 100 80 60 62 50 28 110

now 1 2 3 4 5 6 7 8 9 10 t, hours

All units are in gCO2/kWh

Figure 3.2: The forecasted data are reorganised in 2 hours timeslots

On the Figure 3.2, the best timeslot for the given location is the one that has 39
gCO2/kWh, which is the average of the 2 consecutive 1 hour long forecasted data (50
and 28 gCO2/kWh).

The concepts presented in the following subsections (i.e., definitions, carbon emissions
calculation, objective function, and the pseudo-code algorithm) are heavily inspired
by the work of Nasir Asadov. Over the course of this thesis, various discussions and
brainstorming sessions led to several clarifications and punctual theoretical improvements,
but most of the work had been done before.

18

3.2 Design of the algorithm

3.2.2 Definitions

This part sets out all the required definitions to understand the algorithm.

P : Set of pods, indexed by /

N : Set of nodes, indexed by j

T : Set of time slots, indexed by k

CPU;, RAM; : Resource requirements of pod i
U; : Duration of pod /

Deadline; : Deadline of pod i

Kajk . Predicted average carbon intensity for node j at time slot k

Util; : Predicted utilisation for node j at time slot k

emb
G

L; : Lifetime of node J

: Embodied emissions rate for node j

Cfmb : Total embodied emissions of node

P; : Power consumption of pod /

TimeSlotLength : Length of each time slot

M . A large number for constraints

xijk € {0,1} : 1 if pod / is scheduled on node j at time slot k, O otherwise

3.2.3 Carbon Emissions Calculation

This part explains how the carbon emission is calculated for each pod /, on node J, at
timeslot k.

Operational Emissions
The operational emissions for scheduling pod / on node j at timeslot k are given by:

CoP=ACl x Ui x Pi X X, Vi€ PjeNKeT (3.1)

Embodied Emissions
The embodied emissions for scheduling pod / on node j are given by:

P.
Cgr;bchmbxu,x?’txx,jk, ViePjeNkeT (3.2)
o

The embodied emission is not dependent on the chosen timeslot, as the production
emissions have already been emitted and cannot be affected by the CO> emission
forecast.

19

3.2.4

3.2.5

3.2.6

Chapter 3. Carbon-aware scheduling algorithm

Objective Function

Minimise the total carbon emissions, consisting of operational and embodied emissions:

min} 3% (C;j'; + CZ—’,?”) (3.3)

i€EP jEN k€T

Constraints

Scheduling Constraint
Each pod must be scheduled exactly once:

Z Z Xijk = 1 VieP (34)

JEN keT

Resource Constraints
The resource usage of all pods scheduled on a node at a given time slot must not
exceed the node's capacity:

> TPU; x xy < CPU; x (1= Uty), W€ NVkeT (3.5)
iepP
> RAM, x x < RAM, x (1 Utily), Vje NvkeT (3.6)
iepP

Utilisation Constraint
The total duration of pods scheduled on a node in a given time slot must not exceed
the available capacity:

S U X Xk < (1 - ﬂjk) x TimeSlotLength, Vje N, ke T (3.7)
ieP

Deadline Constraint

Pods must be scheduled within their deadlines:

) Endy x xjjx < Deadline;, Vi€ P (3.8)
keT

20

3.2 Design of the algorithm

3.2.7 Algorithm

The algorithm complexity is quadratic, following the O(n?) form. It schedules pods
in a carbon-aware manner across geographically distributed nodes and time slots. It
considers resource availability, utilisation, and deadline constraints to minimise carbon
emissions. The scheduling algorithm is triggered upon the arrival of a new pod request
(intent file).

Algorithm 1 Carbon-Aware Spatiotemporal Shifting Algorithm with On-Demand

Scheduling

Data: Set of nodes N, set of time slots T, resource requirements and deadlines of

pods, predicted average carbon intensities and utilisation of nodes.
Result: Feasible schedule of pods on nodes and time slots that minimises total carbon
emissions.

Initialise an empty schedule S Initialise resource availability Rj, for all nodes j € N

and time slots kK € T Calculate embodied emissions rate Cfmb for each node j as

b
cemb — o
J L

Initialise C* < oo
Initialise j* < —1
[nitialise k* < —1

foreach time slot k € T do
if End, < Deadline; then
foreach node j € N do
if CPU; < CPU; — Zmesjk CPU,,
ARAM; < RAM; — % RAM,
then
if 3 nes,, Un + Uy < (1= Utili) x TimeSlotLength then

CZI; :Kajk X U,‘ X P,’

Ptot = Zmesjk Pm + Pi

Ctot = CZ’; + (Cf”mb X U,‘ X PF:;t)
if Ctot < C* then

| C*"« Cior J5J k¥ k
end

mESJk

end

end
end

end
end
if j* £ —1AKk*# —1 then
| Schedule pod / on node j* at time slot k*
end

21

4 Implementation

This chapter describes how the project has been technically implemented. The first
part shows a demonstration of FLUIDOS' capability to schedule workload on a remote
location. The second part explains in detail how the algorithm has been developed
within the model-based Meta-Orchestrator framework. The third section shows how
to run the algorithm. The penultimate section describes how and why an algorithm
simulator has been developed during the project. Finally, a small section that explains
other parts of the work done ends the chapter.

Contents

4.1 FLUIDOS remote workload scheduling demonstration 23

4.2 Development of the algorithm within the FLUIDOS architecture 27
421 Projectstructure 29
422 Classes 30
423 Fakerso 31
424 Forecast updater 32
425 Main algorithm 34

4.3 Demonstration of the MBMO and the carbon-aware scheduler 38

4.4 Development of an algorithms simulator 41

45 Otherworkdone 44

22

4.1 FLUIDOS remote workload scheduling demonstration

4.1 FLUIDOS remote workload scheduling demonstration

This demonstration shows the ability of FLUIDOS to schedule a pod from one node to
another one (in other words, to schedule a pod from one Kubernetes cluster to another
one). It is based on the available demonstration on the node GitHub repository [14].
The architecture that has been set up using KinD [15] (Kubernetes in Docker) is shown

in the Figure 4.1:

Docker Desktop #
Jdocker
FLUIDOS Node % FLUIDOS Node %
"Consumer" (KinD) "Provider" (KinD)
socallficsource Meta-Orchestrator socallfiesource Meta-Orchestrator
Manager Manager
REAR Controller REAR Manager REAR Controller REAR Manager
Peerin Peerin
Discovery Solver Candida?es Discovery Solver Candida?es
= Manager Controller & Manager Controller
H H
© ©
S Contract Allocation Available S Contract Allocation Available
Manager Controller Resources Manager Controller Resources

LIQO (managed using ligoctl package)

Figure 4.1: Architecture set up for the basic FLUIDOS demonstration

The goal of this demonstration is to show that the Consumer cluster (on the left) can
establish a peering session with the Provider cluster (on the right) using LIQO, and
start scheduling workloads remotely. This demonstration corresponds to the objectives

1.a and 1.c of the 1.2 "Objectives” section.

The demonstration procedure is described in the README file of the repository. Note
that both KinD and liqoctl are required. The important stages are also listed and
explained in details below for a better understanding:

1. Clone the repository:

git clone https://github.com/fluidos-project/node.git

2. Move into the KinD testbed folder:

cd testbed/kind

3. Execute the setup.sh script to install the 2 FLUIDOS nodes using KinD:

chmod +x setup.sh
./setup.sh

23

Chapter 4. Implementation

24

This script deploys the 2 Kubernetes clusters using KinD, installs the CRDs of
FLUIDOS and also installs the LIQO stack on both clusters.

. After the installation process, both FLUIDOS nodes are being executed. It is

possible to check the pods on each of them using the following commands:

export KUBECONFIG=consumer/config
kubectl get pods -n fluidos

export KUBECONFIG=provider/config
kubectl get pods -n fluidos

As an example, here is the output for the consumer cluster:

NAME READY STATUS [...]
node-local-resource-manager-77657dbdf4-8c6z9 1/1 Running [...]
node-rear-controller-67bdd49dbb-vrptw 1/1 Running [...]
node-rear-manager-79c96d6b75-518nc 1/1 Running [...]

As each Kubernetes cluster represents a FLUIDOS node, each of them executes
the 3 pods representing the Local Resource Manager, the REAR Controller and
the REAR Manager. Note that the Meta-Orchestrator is not visible here for 2
reasons:

(a) It is a Kubernetes operator, not a pod.

(b) It is not implemented yet in this demonstration provided by the FLUIDOS
node repository. A demonstration of the Meta-Orchestrator component is
available in the 4.1.2 “Meta-Orchestrator demonstration” section.

It is also possible to check the state of the LIQO peering session between the 2
clusters using the following command:

liqoctl status peer

4.1 FLUIDOS remote workload scheduling demonstration

The Figure 4.2 shows the status of the LIQO peering session. The status is set to
Connected, and the resources offered by the provider cluster to the consumer
cluster are shown.

martinrn@martins-machook-pro samples % ligoctl status peer

_—M M - - e e e e

Type: OutOfBand

Outgoing: Established
Incoming: None

Status: Established

Status: Established

Status: Connected
Latency: 1ms

Local: 172.18.0.2:31785
Remote: 172.18.0.8:32167

Status: Established

cpu: 1000m
memory: 1.05GiB
pods: 50

ephemeral-storage: 0.00GiB
e —

Figure 4.2: Result of the command “ligoct! status peer”, showing the peering session
between the consumer and provider clusters

5. Now that each FLUIDOS node is up and running, the next step is to deploy a
Solver CR to allow the deployment of workloads. The Solver resource specifies
which resource is requested and any specific requirement. A solver object is ready
to use in the deployments/node/samples for the consumer cluster:

cd ../../deployments/node/samples
export KUBECONFIG=../../../testbed/kind/consumer/config
kubectl apply -f solver.yaml

As the solver is a Kubernetes resource, its deployment can be checked using the
following command:

kubectl get solver -n fluidos

25

Chapter 4. Implementation

The output should look like this:

NAMESPACE NAME INTENT ID FIND CANDIDATE RESERVE AND BUY PEERING [...]
fluidos solv 1intent true true false [...]

Other custom resources have been created, and the following commands shows
their status:

kubectl get flavors.nodecore.fluidos.eu -n fluidos

kubectl get discoveries.advertisement.fluidos.eu -n fluidos
kubectl get reservations.reservation.fluidos.eu -n fluidos
kubectl get contracts.reservation.fluidos.eu -n fluidos

kubectl get peeringcandidates.advertisement.fluidos.eu -n fluidos
kubectl get transactions.reservation.fluidos.eu -n fluidos

6. At this point, the infrastructure for the resource sharing has been created. It is
then possible to schedule workloads from the consumer cluster to the provider
one. To do so, create a namespace, offload it using LIQO, and deploy a pod
within this namespace. Perform these actions from the consumer cluster.

kubectl create namespace demo
ligoctl offload namespace demo --pod-offloading-strategy Remote
kubectl apply -f nginx-deployment.yaml -n demo

7. It is then possible to check the deployment state from the consumer side with
the following commands:

export KUBECONFIG=../../../testbed/kind/consumer/config
kubectl get pods -n demo

The output is the following:

NAME READY STATUS RESTARTS AGE
nginx-deployment-7d4c8fc69d 1/1 Running 0] 2m41ls

8. From the provider side, the pod can also be seen (this is where the pod is really
excuted):

export KUBECONFIG=../../../testbed/kind/provider/config
kubectl get pods -A

The output is the following:

NAMESPACE NAME STATUS [...]
demo-fluidos-consumer-9b1la29 nginx-deployment-7d4c8fc69d Running [...]

26

4.2

4.2 Development of the algorithm within the FLUIDOS architecture

The output is slightly different, as the namespace is not exactly the same. The
consumer cluster has created the demo namespace, and offloaded it to the
provider cluster. From the provider point of view, the namespace is called
demo-fluidos—-consumer-9bla29, showing that it comes from the con-
sumer cluster. The pod executed has exactly the same name on both clusters.

This demonstration showed that using the LIQO stack, FLUIDOS is capable of offloading
workloads from one node to another.

Note that during this demonstration, the pod is forced to be scheduler on the remote
cluster. This demonstration is made in a testing environment designed to test the
features of the FLUIDOS node. In a production environment, the pod request (a.k.a.
intent file) must be processed by the model-based Meta-Orchestrator. It will select a
specific scheduler (latency-aware, cost-effective, carbon-aware...) that will schedule the
pod according to its own logic.

The next section describes how the carbon-aware scheduling algorithm has been de-
veloped within the model-based Meta-Orchestrator. A demonstration of this MBMO
(model-based Meta-Orchestrator) is also available in the 4.3 Demonstration of the
Meta-Orchestration and the carbon-aware scheduler section.

Development of the algorithm within the FLUIDOS

architecture

The biggest part of the source code of the algorithm is available on the WP4 GitHub
repository [7] in the fluidos_model_orchestrator/model/carbon_aware
folder. It is also possible to check all the changes made by the project by reading the
Pull Request #41 [16].

The carbon-aware spatiotemporal scheduling algorithm has been developed within the
FLUIDOS Meta-Orchestrator component, which is a Kubernetes operator running on
each FLUIDOS node (in other words on each Kubernetes cluster). The algorithm
is seen as a specific scheduler that can be called by the operator, when the intent
file specifies the carbon-aware aspect. Other schedulers are being developed, such as
latency-aware and cost-effective (the FLUIDOS architecture introduces the notion of
cost when reserving remote resources using the REAR protocol). The development of
this algorithm corresponds to the objective 3 of the 1.2 “Objectives” section.

27

Chapter 4. Implementation

FLUIDOS Node ()

Meta-Orchestrator

Other internal
components

(Kubernetes operator)

Other schedulers (latency-aware...)

Carbon-Aware Scheduler

Main
Algorithm

Electricity
Forecast
Updater

Energy
Prediction
Updater

Updates the forecast on local flavour's
location. Call made each hour,
when new data is available.

7

&

Updates the energy prediction for each
local flavour. Call made each hour,
when new data is available.

Electricity
Maps
API

Energy
Prediction
API

Figure 4.3: Environment of execution and components diagram of the algorithm within
the FLUIDQOS architecture

The Figure 4.3 shows the environment in which the algorithm is developed and executed.

It also shows the external components that it interacts with.

The algorithm is made of three blocks:

1. The main algorithm, that is called by the Meta-Orchestrator and computes the
problem explained in the 3.2 section.

2. The electricity forecast updater that uses an external API provided by the Elec-
tricity Maps company [17]. This updater is called each hour as a standalone
component by the operator to update the forecast of each local flavor. This way,
each FLUIDOS node is responsible of updating its own local flavors. When the
algorithm needs to gather the forecasted data from remote flavors, it can simply
take the information using the REAR protocol. The data model used is specified
in the REAR-data-models GitHub repository [18].

28

4.2 Development of the algorithm within the FLUIDOS architecture

The different useful information regarding the carbon-aware scheduler are shown
in the Figure 4.4:

embodiedEmissions: operationalEmissions: location:
integer integer[] -lon: float
- lat: float
Example: Example: Example:
254
lon: -3.0912
201
1000
154
lat: 11.782
190

Figure 4.4: Data model used by the carbon-aware scheduler

3. The energy prediction updater, that is a component used to predict the resources
utilization of nodes on specific timeslots. As the machine learning model developed
by FBK did not correspond exactly to the needs of the algorithm, and needed to
be reworked in depth, this component could not be developed. As a workaround,
simple functions that randomly generate predictions were developed to obtain
usable data.

4.2.1 Project structure

The algorithm has been developed within the WP4 GitHub repository (model-based
Meta-Orchestrator). The carbon-aware algorithm uses different files and datasources
to compute the optimization problem. The following files structure has been created
within the model-based Meta-Orchestrator GitHub repository:

fluidos_model_orchestrator/
daemons_and_times/
L,flavor.py
model/
L,carbon_aware/
| classes/
carbon_aware_flavor.py
carbon_aware_pod. py
carbon_aware_timeslot.py
. fakers/
L,workload_prediction_generator.py
. _forecast_updater.py
| _orchestrator.py

29

4.2.2

Chapter 4. Implementation

The carbon_aware folder contains all the classes and functions used by the algorithm.

The implementation has been done on the wp6-algorithm branch of the MBMO
GitHub repository (also called WP4 repository) [7]. A Pull Request has been created to
easily review the code added during the thesis [16]. It has been needed multiple time
to rebase the wp6—-algorithm on the main branch to take advantage of the new
features being developed by Stefano Braghin.

Classes

As the data used by the algorithm does not only rely on FLUIDOS' information, the
three classes have been created to gather information from FLUIDQOS flavors and other
datasources (such as external APIs). These are very simple classes files that defines
the objects required by the algorithm.

For example, the CarbonAwareFlavor class defines a FLUIDOS flavor with more
information, such as embodied emissions and the electricity forecast for the location of
the flavor:

class CarbonAwareFlavor:
def __dinit__(self, id, embodiedCarbon, lifetime, totalCpu, totalRam,
— totalStorage, forecast):
self.id = 1id
self.embodiedCarbon = embodiedCarbon
self.lifetime = lifetime
self.totalCpu = totalCpu
self.totalRam = totalRam
self.totalStorage = totalStorage
self.forecast = forecast

The same principle is used for both CarbonAwarePod and CarbonAwareTimeslot
classes. The CarbonAwarePod class is the following:

from datetime import timedelta, datetime

class CarbonAwarePod:
def __dinit__(self, id, deadline_hours, duration, powerConsumption,
< cpuRequest, ramRequest, storageRequest):
self.id = -id
self.deadline = processDeadline(self, deadline_hours)
self.duration = duration
self.powerConsumption = powerConsumption
self.cpuRequest = cpuRequest
self.ramRequest = ramRequest
self.storageRequest = storageRequest

def processDeadline(self, deadline_hours):
now = datetime.now()
delta = timedelta(hours=deadline_hours)
return now + delta

30

4.2.3

4.2 Development of the algorithm within the FLUIDOS architecture

The unusual aspects of this pod are the deadline and duration attributes, which refers
to the ability to defer the execution of the pod in the future and the time expected
for the pod to perform its job. Note that the deadline of the pod refers to the last
time the pod can be started. The duration is used to compute both operational and
embodied emissions during the execution of the algorithm.

The CarbonAwareTimeslot object refers to a time slot, within which a pod can be
executed:

from datetime import timedelta, datetime

class CarbonAwareTimeslot:
def __init__(self, id, startYear, startMonth, startDay, startHour, length):
self.id = 1id
self.start = datetime(startYear, startMonth, startDay, startHour)
self.length = timedelta(hours=1length)

def getEnd(self):
return self.start + self.length

def getStart(self):
return self.start

A timeslot must be valid (starting before or in the same time of the deadline of a
pod) to handle a pod. To check if a timeslot is valid, the following function has been
developed:

def _is_timeslot_valid(timeslot: CarbonAwareTimeslot, pod: CarbonAwarePod) ->
— bool:

return (pod.deadline > timeslot.getStart()) & (datetime.now() <=

< timeslot.getEnd())

It it returns true, then the timeslot is valid and the algorithm starts iterating over all
nodes to check if they can handle the pod, and find the lowest carbon value using the
forecasted data for each location.

Fakers

During the implementation phase, some parts of the required APIls were not available,
such as the energy and workload prediction model. To overcome this problem, a very
simple file has been created to randomly generate a number representing the use of a
resource. This function is available in the workload_prediction_generator.py
file. Other similar functions were developed during the course of the project (i.e.,
regarding the electricity forecast data), but the progress made by WP4 in developing
the framework meant that they were no longer necessary.

import random

def generate_resource_prediction(totalResource):
return random.randint(0, totalResource)

31

4.2.4

Chapter 4. Implementation

This function is only used to generate a fake resource utilisation prediction. Once
the machine learning will be updated and ready to use, the developers simply need to

replace this function with a call to the model.

Forecast updater

The forecast updater is the component in charge of updating the local flavors each
hour with new data coming from the Electricity Maps API. The FLUIDOS project has
a private API key to obtain forecast data on different regions and countries around the

world.

Technically, the component has been implemented in 2 different parts:

1. The forecast_updater.py file, which concentrates all the functions used
to gather new forecast data and update the local flavors. This file has been

developed only by Martin Roch-Neirey. It contains 3 functions:

(a) The _get_T1live_carbon_intensity(lat, lon) function, that takes
into parameter a latitude and longitude coordinates, calls the Electricity
Maps API and returns the value of the live electricity carbon intensity at

the given coordinates.

def _get_live_carbon_intensity(lat, lon):
BASE_URL = 'https://api.electricitymap.org/v3'

HEADERS = {'auth-token': str(API_KEY)}
url = f"{BASE_URL}/carbon-intensity/latest"
params = {'lat': lat, 'lon': lon}

if response.status_code == 200:
return response.json()["carbonIntensity'"]
else:
logging.exception(f"Error fetching live data:
— {response.status_code} - {response.text}")
return None

API_KEY = CONFIGURATION.api_keys['ELECTRICITY_MAP_API_KEY']

response = requests.get(url, headers=HEADERS, params=params)

(b) The _get_forecasted_carbon_intensity(lat, lon), which is
very similar to the _get_1live_carbon_intensity(lat, lon) but
outputs a list of values instead of one value. Each item of the list represents
the forecast for 1 hour. The Electricity Maps API allows to gather forecast

up to 48 hours. These values are updated each hour.

32

4.2 Development of the algorithm within the FLUIDOS architecture

(c) Theupdate_local_flavor_forecasted_data(flavor: Flavor,
namespace: str) that takes into parameter a FLUIDOS flavor and
a namespace, calls the 2 previous functions, and updates stores the new
forecasted data in the flavor's data.

def update_local_flavor_forecasted_data(flavor: Flavor, namespace:
< str) -> None:
lat = flavor.location.get("latitude")
lon = flavor.location.get("longitude")
new_forecast = _get_forecasted_carbon_intensity(lat, lon)
new_forecast.insert(0,
_get_live_carbon_intensity(lat, lon)) #
— 1ndex 0 = current intensity. Forecast
— starts at index 1
new_forecast_timeslots = []
for i in range(len(new_forecast) - 1):
average = (new_forecast[i] + new_forecast[i + 1]) / 2
new_forecast_timeslots.append(average)
optionalField = {"operational": new_forecast_timeslots}
get_resource_finder (None, None).update_local_flavor(flavor,
— optionalField, namespace)

The function retrieves the location of the flavor, calls the 2 previous functions
to retrieve the carbon intensity of the electricity in real time and the forecasts,
then collates this data in a single table. The table is manipulated so that
each item represents a timeslot of 2 hours, which corresponds to the duration
with which the algorithm works. One area for improvement would be to
have a system that adapts to the duration of CarbonAwareTimeslots, but it
was decided at the start of the project that these timeslots would be fixed
at 2 hours.

Once the data array is ready, the function calls the framework API (developed
by Stefano Braghin) to update the field in the flavor data.

33

4.2.5

Chapter 4. Implementation

2. The hourly execution process, which is part of a new feature of the

framework developed by Stefano Braghin: the observation feature that allows
to perform task on each flavor at regular interval. This part has been de-
veloped by Stefano Braghin and Martin Roch-Neirey. The file used is flui-
dos_model_orchestrator/daemons_and_times/flavor.py. The full
content is not shown here, but the most important part is the following:

meta represents the metadata of the flavor
spec represents the specifications of the flavor
while True:
if stopped:
return
flavor = build_flavor({
"metadata": meta,
""'spec": spec

D)

if namespace s None:
namespace = '"default"

update_local_flavor_forecasted_data(flavor, namespace)

await asyncio.sleep(CONFIGURATION.DAEMON_SLEEP_TIME) # 1 hour

This part is executed as a separate thread for each local flavor. One time per hour,
the flavor metadata and specifications are retrieved, and passed as parameter of
the forecast updater function. This done, each local flavor gets its forecast data
updated one time per hour. The values can then be retrieved by local or remote
components using the REAR protocol.

Main algorithm

The main algorithm is available in the orchestrator.py file. The entire file is
relatively large, and only thep most important parts will be described below. The full
source code is available on the GitHub repository [16].

Function and output
The CarbonAwareOrchestrator extends the ModelInterface, which means it
inherits 2 functions:

34

e Thepredict(self, data: ModelPredictRequest, architecture:

str = "armé64") -> ModelPredictResponse | None function, thatis
used to specify precise resources that must be used to schedule the pod.

e Therank_resource(self, providers: TLlist[ResourceProvider],

prediction: ModelPredictResponse, request: ModelPredic-
tRequest) -> list[ResourceProvider] function, that is used to rank
different flavors (contained in each ResourceProvider instance).

4.2 Development of the algorithm within the FLUIDOS architecture

The predict() function has not been used in this project, as Stefano Braghin
suggested to use the rank_resources () function and output a list of 1 Resour-
ceProvider instance. This has been done because the pred-ict () function cannot
specify one precise flavor, which is the goal of the carbon-aware algorithm.

As a result, the rank_resources () function contains all the code of the algorithm,
and the output is the following:

e A list of one ResourceProvider instance, that represents the flavor selected
by the algorithm. This output represents the spatial aspect of the algorithm.

e The delay of execution of the selected flavor, which is specified using the Mod-
elPredictResponse object given as parameter. This object is passed to the
function by reference, which allows the algorithm to directly modify the value of
its "delay” attribute, which corresponds to the waiting time for scheduling the
pod. This output represents the temporal aspect of the algorithm.

Structure
The main algorithm is structured in 6 main parts:

1. The first part ensures that the intent file received is correct (i.e., the pod deadline
is consistent, CPU and RAM demand are greater than 0). In case all conditions
are not validated, the algorithm returns an empty list of ResourceProvider.
Here is a simplified view, as an example for the CPU part:

deadline = np.nan
for dintent in request.intents:
match intent.name.name:
case 'cpu":
cpuRequest = cpu_to_int(intent.value)
[...] # other checks omitted in this example

if cpuRequest == np.nan or cpuRequest <= 0:
logging.exception("CPU request must be provided greater than 0")
return []

2. The second part creates the CarbonAwareTimeslot instances according to
the deadline of the pod. Only required timeslots are generated.

timeslots = []
now = datetime.now()
start_time = now.replace(minute=0, second=0, microsecond=0)
for i in range(int(deadline)):
slot_time = start_time + timedelta(hours=1i)
timeslot = CarbonAwareTimeslot(i, slot_time.year, slot_time.month,
— slot_time.day, slot_time.hour, 2)
timeslots.append(timeslot)

The timeslots list then contains all timeslots generated, and the algorithm
will iterate over them.

35

Chapter 4. Implementation

36

3. The algorithm then creates all the CarbonAwareFlavor from the list of

ResourceProvider given as parameter. Each ResourceProvider object
contains one flavor, and each flavor contains its own metadata and specifications.

providers is the list of ResourceProviders given as parameter to the
— algorithm
for provider 1in providers:
flavor = provider.flavor
flavors.append(
CarbonAwareFlavor (
flavor.1id,
flavor.optional_fields.get("embodied"),
4, # 4 years of lifetime estimated
cpu_to_int(flavor.characteristics.cpu),
memory_to_int(flavor.characteristics.memory),
flavor.characteristics.persistent_storage,
flavor.optional_fields.get("operational")

))

The flavors list then contains all the CarbonAwareFlavor generated, and
the algorithm will iterate over them.

4. The fourth part is the creation of the CarbonAwarePod from the information

retrieved in the intent file.

request.id, deadline, cpuRequest, ramRequest are retrieved from the

— intent file

podToSchedule = CarbonAwarePod(request.id, deadline, 2, 0.03, cpuRequest,
— ramRequest, 0)

For now, the .03 value represents 0.03kW of power consumption for this pod.
This value is arbitrary and should be dynamic in the future, when more tools will
be available to predict the power consumption of a pod based on the workload
and the flavor's CPU. It has also been decided to not take into account any
storage request for now.

5. The fifth part is the core of the algorithm. It iterates over each timeslot, and for

each valid one, it iterates over all the flavors.

for ts in timeslots:
Hommm e New timeslot iteration —--——-—————————=——————-
if _is_timeslot_valid(ts, podToSchedule):
for flavor 1in flavors:
Hmmm e New node iteration —--—-—-———————————————-
if _check_node_resource(flavor, ts, podToSchedule):

operationalEmissions = (flavor.forecast[
ts.id]) * podToSchedule.duration *
— podToSchedule.powerConsumption # grams, hours, kW

embodiedEmissions = ((flavor.embodiedCarbon / (365 *
— flavor.lifetime * 24)) / (
1 + 1)) * podToSchedule.duration

totalEmissions = operationalEmissions + embodiedEmissions

4.2 Development of the algorithm within the FLUIDOS architecture

if totalEmissions < minimal_emissions:
if best_node is not None and best_timeslot 1is not
— None:
minimal_emissions = totalEmissions
best_node = flavor
best_timeslot = ts

The function _is_timeslot_valid(ts, podToSchedule) has already
been explained in the 4.2.2 Classes subsection. When a timeslot is considered
as valid, the algorithm checks for each flavor if it has enough resources to
handle the pod. To do so, the function _check_node_resource(flavor,
timeslot) generates fake resource prediction and compares them to the pod
requests:

def _check_node_resource(flavor: CarbonAwareFlavor, timeslot:
— CarbonAwareTimeslot, pod: CarbonAwarePod):

cpu_used_prediction = generate_resource_prediction(flavor.totalCpu)
ram_used_prediction = generate_resource_prediction(flavor.totalRam)

if (flavor.totalCpu - cpu_used_prediction) < pod.cpuRequest or (
flavor.totalRam - ram_used_prediction) < pod.ramRequest:
return False
return True

Note that this is a temporary implementation that will be replaced by the machine
learning model developed by FBK within the work package 6 of the FLUIDOS
project.

If the current node (flavor) has enough resources to accomodate the pod, the
algorithm computes both operational and embodied emissions as defined in the
3.2.3 Carbon Emissions Calculation subsection. The total emission is then
compared to the current minimal value found, and replaces it if the value is lower.
In such a case, the best node and best timeslot are also replaced.

6. The sixth and final step updates the prediction delay (a.k.a. the number of hours
in which the pod will be scheduled) and returns the best flavor.

prediction is an instance of ModelPredictResponse, given as a parameter
— to the algorithm.
prediction.delay = best_timeslot.id

for provider in providers:

if provider.id == best_node.1id:
return [provider] # list of 1 element
return []

After having explained how the algorithm have been developed, the next section
focuses on the demonstration of the model-based Meta-Orchestrator and the
execution of the algorithm.

37

4.3

Chapter 4. Implementation

Demonstration of the MBMO and the carbon-aware scheduler

This section explains how to use the the model-based Meta-Orchestrator (MBMO)
and how to execute the algorithm. The MBMO is explained in details in the 2.2.2
“"Model-based Meta-Orchestrator” subsection and in the 2.2.3 “Simplified workflow

example” subsection.

The goal of this demonstration is to explain how to interact with the model-based
meta-orchestrator using an intent file. The Figure 4.5 shows the FLUIDOS cluster

created using KinD:

Docker Desktop #

docker

FLUIDOS Cluster

Flavor 1 (Kubernetes worker)

arch: armé4
LocallResource Meta-Orchestrator cpu: 1970997205n
Manager —> memory: 3794616Ki
embodiedEmission: 1200
latitude: 48.864716
longitude: 2.349014
REAR Controller REAR Manager
X Peering
Discovery Solver Candidates Flavor 2 (Kubernetes worker)
%. Manager Controller architecture: arm64
s cpu: 1980938668n
% > memory: 3835200Ki
. embodied: 1300
O Contract Allocation Available — atitude: 37.7749
Manager Controller Resources longitude: -122.431297

LIQO (managed using ligoctl package)

Figure 4.5: FLUIDOS cluster used for the MBMO demonstration

This cluster is made of a single FLUIDOS node with 2 flavors inside. It is totally
possible to have multiple FLUIDOS nodes and remote flavors, but the testbed provided
by the WP4 repository does not have such a configuration. Note that this cluster is
different from the one used in the FLUIDOS remote scheduling demonstration because
some components are still actively under development. The node repository and the
MBMO repository does not have exactly the same components available. Note that
this demonstration is based on the one available on the WP4 MBMO repository [7]
and requires liqoctl, KinD, and a valid Electricity Maps API key with access to the
countries where the flavors are located.

38

4.3 Demonstration of the MBMO and the carbon-aware scheduler

To execute the MBMO and the carbon-aware scheduler, the following steps are required
(for an ARM-based architecture):

1. Clone the WP4 MBMO GitHub repository:

git clone https://github.com/fluidos-project/fluidos-modelbased-metaorche
— strator && cd
— fluidos-modelbased-metaorchestrator

2. Install the FLUIDOS cluster using KinD:

kind create cluster --name foo --config utils/cluster-multi-worker.yaml
« —-kubeconfig utils/examples/dublin-kubeconfig.yaml

3. Install the required CRDs and packages:

kubectl apply -f utils/fluidos-deployment-crd.yaml

kubectl apply -f tests/node/crds

kubectl apply -f tests/node/crds/nodecore.fluidos.eu_flavours.yaml
kubectl apply -f utils/examples/arm-flavours-list.yaml

pip install -e .

4. As the carbon-aware scheduler connects to the Electricity Maps API, an API key
is needed. The API key can be written in the tests/data/example-mbmo-
config-map.yaml file, by replacing the TEST_KEY_123! placeholder. Once
replaced, apply the ConfigMap:

kubectl apply -f tests/data/example-mbmo-config-map.yaml

Note that this is not a production-ready secret management system, and this is
only usable in a development environment. The WP4 responsibles have planned
developing the system using Kubernetes Secrets in the future.

5. At this step, the FLUIDOS cluster is ready. The next step is to modify the intent
file depending on the needs. The utils/examples/carbon-intent.yaml
file contains a sample intent:

apiVersion: apps/vl
kind: Deployment
metadata:
name: test-deployment
annotations:
fluidos-intent-deadline: "12"
labels:
app.kubernetes.io/name: "test-deployment"
spec:
replicas: 1
selector:
matchLabels:
name: test-deployment
template:
metadata:

39

Chapter 4. Implementation

40

labels:
name: test-deployment
app.kubernetes.io/name: "test-deployment"
spec:
containers:
- name: nginx
image: nginx:latest

ports:
- containerPort: 80
resources:
Timits:
cpu: "500m"
memory: "256Mi"
requests:
cpu: "500m"

memory: "256Mi"

The most important part of this file is the annotation fluidos-intent-
deadline: "12" that informs that the pod can be delayed of a maximum of
12 hours.

Next step is to start the model-based Meta-Orchestrator using the following
command:

kopf run --verbose -m fluidos_model_orchestrator

The command kopf stands for Kubernetes OPerators Framework, which is the
framework used by the WP4 to develop the MBMO.

If no error are shown in the console, another terminal can be opened in the root

folder of the project, and used to send the carbon-aware intent to the MBMO:

kubectl fluidos -f utils/examples/carbon-intent.yaml

The output should look like this:

kubectl_fluidos - INFO - Starting FLUIDOS kubectl extension
kubectl_fluidos - INFO - Invoking K8S with Intent Service Handler
kubectl_fluidos.modelbased - INFO - Wrapping request
kubectl_fluidos.modelbased - INFO - Converting to dictionary
kubectl_fluidos.modelbased - INFO - Sending request to k8s

. On the first terminal (the one that started the MBMO), some logs should appear

saying that the scheduler succeded:

[INFO default/test-deployment] Creation processed: 1 succeeded; 0 failed.

No pod will be executed, because the 2 local flavors are fake. They are visible
to the MBMO but does not truly exist. This testbed is only made to test the
scheduling and logic parts, but not the execution part that has already been
shown in the FLUIDOS / LIQO demonstration.

4.4 Development of an algorithms simulator

4.4 Development of an algorithms simulator

One of the initial outputs of the project was a specifications document listing the possible
features of an algorithm simulator to facilitate their development and improvement,
before porting them to the FLUIDOS architecture.

After several days, and seeing that certain aspects of the implementation could be
delayed due to other components, a small simulator was finally developed from scratch.
It has then been possible to quickly test the algorithm, visualise the results, improve it and
get an initial idea of its effectiveness before developing it on the FLUIDOS architecture.
Note that this part of the thesis was not requested in the initial specifications. It has
finally proven to be very helpful. The only thing initially requested was to specify the
possible functionalities of such a simulator.

The project is only a proof of concept of what could be a more complete simulator,
but it already offers the following features:

e Reproduction of the FLUIDOS architectural model, with no direct link to the
project (nodes, pods, timeslots).

e Development of algorithms that use instances of these classes to solve a given
problem.

e Automatic generation of algorithm input values.

e Results displayed in the form of an automatically generated plot.

The source code is not shown in this report as this is a basic Oriented-Object Programming

(OOP) project without any complexity, but the source code of the simulator is available
on the SchedulingAlgorithmsSimulator GitHub repository [19] as part of the
FLUIDOS organisation. The structure of the project is the following:

schedulingAlgorithmsSimulator/
. _algorithms/
L,spatiotemporalOl/
main0Ol.py
main02.py
main03.py
spatiotemporal®l.py
. _models/
node.py
pod.py
timeslot.py
| views/
L,plot.py

The algorithms/spatiotemporal@l/ folder contains 3 executable files and one
implementation of the spatiotemporal scheduling algorithm, identical to the one de-
veloped within the FLUIDOS architecture. Each executable file contains different

41

Chapter 4. Implementation

functions and initial data to start the algorithm. For instance, the main01.py file
always generates the same input, as it would be done for a unit test. The main02.py
generates random nodes, pods and forecast, while the main®@3.py is similar to the
main01l.py file.

The models/ folder contains the classes used by the algorithms. They are similar
to the one defined in the MBMO repository (CarbonAwareFlavor, CarbonAwarePod,
CarbonAwareTimeslot).

The views/plot.py file contains numerous functions to create a visual representation
of the results of the algorithm. The Figure 4.6 shows an example of the execution of
the main02. py file that generates random inputs and calls the spatiotemporalol
algorithm.

TS0 TS1 152 1S3 TS4 TS5 156 TS7 TS 8 159
Node 0 922,537 430537 634.537 352.537 808.537 0
embodied: 1691334 gCo2 . : . . .

Node 1 ARG 120 120

embodied: 866166 gCo2 | 1022439 0 337.439 | 335439

Node 2

embodied: 1986838 gCo2 L 515.404 404 0 077.40 421.404
Node 3

embodied: 2206724 gCo2 965.955

L e D e 1508 4424 1908 444 | 1495 444

embodied: 1619621 gCo2

Node 5 Y o -

embodied: 2434653 gco2 | 400964 42.96 502.964 [1030.964 06.96 06.96 408.964
Node 6 o a

embodied: 1005455 gCo2 331.389 CEELENN 339389 6 Il 671.389 307.389
Node 7 492.307 480.30 534.307 452.30 842307 | 432307 | 336.307
embodied: 2037692 gCo2 : - - . B
Node 8 o

embodied: 648671 gCo2 el 0 561.025 0

Node 9

embodied: 906261 gCo2 315.727 905.727

Figure 4.6: Output of the algorithm simulator. Values in cells are in gCO»

The nodes are listed on the left with their embodied emissions, and the timeslots are
on the top. Here are the useful information to read the plot:

e The cell circled in blue represents the result. It corresponds to the tuple
[node;timeslot] which is the output of the algorithm. This is where and
when the algorithm decided to schedule the pod. It should be the minimum value
between all cells (minimal CO, emissions).

e The value inside each cell represents the amount of CO2 emitted if the pod is
scheduled here.

e The color of each cell is a simple way to view the best and worst cells. The
coloration scheme is linear.

42

4.4 Development of an algorithms simulator

e Some cells are totally white, meaning the timeslot is not valid for the given pod
or the node does not have enough resources left to accommodate the pod on the
given timeslot.

For example, the white cells alone indicates that the node does not have enough
resources left to accommodate the pod. The 2 last columns are also white because the
timeslots are not valid (they start too late compared to the pod’s deadline).

To obtain this result, the main02. py file generated fake pods, nodes, timeslots and
carbon intensity forecast for each node, and then called the spatiotemporal®l
algorithm. The results retrieved are then given as parameters to the showPlot ()
function of the plot.py file that generates the image, table, fills the cells, colors
them, highlights the chosen cell, and shows the final image produced. Note that the
input data are randomly generated between real life data. The simulator does not use
the Electricity Maps API to enable more people to use it without the need of an API
key, and to leave this API key for production-grade execution.

The plot obtained by the simulator can give first elements of comparison between
the carbon-aware scheduler and other schedulers (vanilla Kubernetes, latency-aware,
cost-effective...). The algorithm ensures to take the lowest value in the available cells,
ensuring that this is the most carbon-aware scheduler of all schedulers. With more
time, more precise comparison could have been given.

The algorithm simulator may be improved easily by adding the following features:

e Ability to run a particular algorithm a certain times and get a summary of the
results.

e Comparison of several algorithms on the basis of different criteria (CO2 savings,
execution time, complexity, etc.).

This first version of the algorithm simulator was very useful throughout the thesis, for
experimenting and validating modifications to the algorithm design. Discussions took
place in the final days of the project with the FBK team to consider the development
of a more complete simulator. Discussions will continue in September.

43

4.5

Chapter 4. Implementation

Other work done

In addition to the implementation of the algorithm within the FLUIDOS architecture
and the simulator, some other tasks were carried out throughout the project. They do
not constitute the main tasks of the project but are nevertheless documented below:

e Discussion and review on expanding the FLUIDOS MBMO API (ability to modify
local flavors from a scheduler, add hourly caller function...).

e Creation of unit tests dealing with the carbon-aware scheduler.

e Follow-up of bi-weekly FLUIDOS meetings related to work packages 6 (the one
concerned by this thesis), 3 (concerning the development of FLUIDOS nodes)
and 4 (concerning the MBMO).

e Follow-up of other FLUIDOS meeting related to important topics on the project
(major release, year review...).

e Active communication with the required work packages (2, 3, 4, 5) concerning
the overall progress of the project and synchronisation of the various elements
and work groups.

44

5.1

Conclusion

This chapter concludes the overall project, providing final results, conclusion, perspec-
tives and a personal conclusion.

Global overview

The main objectives of the project were achieved. The FLUIDOS architecture has
been explained and 2 main sides of the project have been demonstrated: the capability
of FLUIDOS to schedule pods on remote nodes using the LIQO stack, and the way
the model-based Meta-Orchestrator is executed and schedules pods across the cluster.
Besides, the FLUIDOS API has been documented and explained in this thesis, using
the WP4's framework which represents the execution environment of the algorithm
developed. Finally, a spatiotemporal shifting algorithm has been implemented within the
model-based Meta-Orchestrator, which is the scheduler component of the FLUIDOS
architecture. This spatiotemporal algorithm schedules pods across geographically
distributed flavors and time slots while minimising the carbon emissions.

It is important to note that this scheduler does not take into account all the CO2
emissions of the scheduling process. For example, this algorithm ignores the energy
required to transfer persistent volumes from one node to another, or to transfer the
image of the container to be executed. In addition, certain assumptions were made
about different aspects, such as the fact that a pod’s power consumption is constant,
and that the pod lasts exactly 2 hours.

The secondary objectives were partially achieved, in particular the comparison of different
scheduling algorithms. Several meetings were held with various work packages and
players (IBM, FBK) to discuss latency-aware and cost-effective algorithms, but the
analysis was not taken any further for lack of time.

In addition, the proof of concept of an algorithm simulator has been developed to
enable different algorithms to be tested upstream without having to develop them on
the FLUIDOS architecture. This point was not requested at the outset of the project
and represents an added value that enables scheduling algorithms to be better prepared
for deployment in complex environments such as the FLUIDOS one.

Certain difficulties were encountered during the project, particularly during the imple-
mentation phase. The FLUIDOS project brings together 16 different actors divided
into 10 work packages, and WP6 is technically very dependent on WP4 (Intent-based
decentralised FLUIDOS continuum). Numerous bugs have been found and reported
to the framework developers, but this has led to delays in implementing the algorithm
within the framework. This accumulated delay has not been in vain and has permitted
to improve the framework, extend the APIs available to offer new functionalities and,
more generally, move the FLUIDOS project forward.

45

5.2

Chapter 5. Conclusion

Next steps

The FLUIDOS project was officially launched in September 2022, and is due to run
until August 2025. With a duration of 3 years, 2 of which have already almost elapsed,
here are the possible next steps to be taken within work package 6, in connection with
this bachelor's thesis:

46

e \When the new version of the FLUIDOS node and REAR-data-models are released,

the framework's code and API will need to be adapted to interact directly with
the corresponding data.

Redefine the interfaces and objective of the machine learning model developed
to predict node usage at a given time. In particular, the model needs to predict
CPU and RAM usage.

Extend the principle of 2-hour timeslots to a more variable duration, and also
take into account the possibility that a pod may have a longer execution time
than the duration of a timeslot. In such a case, we need to consider finding the
best sliding average over the sets of consecutive timeslots that can execute the
pod.

Carry out complete benchmarks of the algorithm on various criteria (execution
time, variation in input parameters, comparison with other algorithms, etc.). Two
meetings have been held with the FBK team (one of the actor of the project)
to start thinking about a tool for in-depth benchmarking of the algorithm, and a
third is planned for September.

Study the CO5 savings achieved by the carbon-aware algorithm compared with
other existing scheduling algorithms (vanilla Kubernetes scheduling, other MBMO
schedulers, etc.).

Extend the logic of the algorithm to more complex cases where the duration of
the pod and its power consumption over time are variable.

Extend the logic of the algorithm to include “re-scheduling”, which consists of
moving pods already running at location A to location B in order to emit less
CO2. This logic must take into account any potential downtime by seeking to
minimise it and also the energy cost required to transfer the pod.

5.3

54

5.3 Personal feedback

Personal feedback

From a personal point of view, I'm very happy to have had a European research project
as the topic of my Bachelor’s thesis. I'm even happier about the fact that this project
took place outside Switzerland, in a country | didn't know. | discovered a city, a
university, an institute, and researchers who are passionate about their topics and
dedicated to their work.

More generally, the FLUIDOS project enabled me to meet many people from different
backgrounds, and made me realize the complexity and importance of communication
and organisation in projects of this scale. This thesis has put me right at the heart
of a project involving over 90 people scattered across Europe, and I've really enjoyed
thinking, discussing and confronting ideas with my colleagues from WP6 and other
work packages.

On the technical side, | also really enjoyed discovering the FLUIDOS architecture, testing
it, pointing out bugs, reiterating, and finally making my own contribution by developing
the algorithm within it. | also really enjoyed developing my own little simulator, which
enabled us to save time thinking about and studying the algorithm’s behavior, quickly,
accurately and visually.

I"d like to thank everyone who contributed in any way to my Bachelor's project, and I'll
treasure my memories of the experience.

HES-SO legal information

Declaration of honour |, the undersigned, Martin Roch-Neirey, declare on my honour
that the work submitted is my own work. | certify that | have not resorted to plagiarism
or any other form of fraud. All sources of information used and author citations have
been clearly stated.

Martin Roch-Neirey

47

A Actors and work packages of the
FLUIDOS project

Number | Short name | Legal name Country
1 MAR MARTEL INNOVATE BV NL
2 umMu UNIVERSIDAD DE MURCIA ES
3 FBK FONDAZIONE BRUNO KESSLER IT
4 POLITO | POLITECNICO DI TORINO T
5 RSE RICERCA SUL SISTEMA ENERGETICO - T
RSE SPA

6 ROB ROBOTNIK AUTOMATION SLL ES

7 DSME EUROPEAN DIGITAL SME ALLIANCE BE

8 IBM IBM IRELAND LIMITED IE

9 TID TELEFONICA INVESTIGACION Y DESAR- ES
ROLLO SA

10 TOPIX CONSORZIO TOP-IX - TORINO E T
PIEMONTE ECHANGE POINT

11 BOR BORDERSTEP INSTITUT FUR INNOVA- DE
TION UND NACHHALTIGKEIT GEMEIN-
NUETZIGE GMBH

12 HMU ELLINIKO MESOGEIAKO PANEPISTIMIO EL

13 STM STMICROELECTRONICS GRENOBLE 2 FR
SAS

14 TUB TECHNISCHE UNIVERSITAT BERLIN DE

15 CYSEC CYSEC SA CH

16 TER Terraview GmbH CH

48

Table A.1: List of actors

Number Name Lead beneficiary
WP1 FLUIDOS Governance 1- MAR
WpP2 FLUIDOS reference architecture 4 - POLITO
WP3 Modular and extensible FLUIDOS node 10 - TOPIX
WP4 | Intent-based decentralised FLUIDOS continuum 8- IBM
WP5 Seamess, zero-trust security and privacy 3 - FBK
WP6 Cost-effective and energy-aware infrastructure 14 - TUB
WP7 Business use cases and market validation 16 - TER
WP8 Community building and Open Calls 7 - DSME
WP9 Agile integration & testing 2 - UMU
WP10 Project Coordination 1- MAR

Table A.2: List of work packages

49

B Draft of a research paper

A draft of a paper regarding the implementation of the algorithm and the whole project
is accessible on the next page.

This draft only contains the structure of the paper. Due to a lack of time, Vlad Coroam3,
Nasir Asadov and Martin Roch-Neirey decided to write this paper in September.

50

Implementation and benchmarking of a carbon-aware scheduling
algorithm in a distributed computing continuum

NASIR ASADOV, Chair of Sustainable Engineering (SEE), Germany
MARTIN ROCH-NEIREY, Institute of artificial intelligence and complex systems (iCoSys), Switzerland
VLAD COROAMA, Chair of Sustainable Engineering (SEE), Germany

abstract
Additional Key Words and Phrases: a, b, ¢

ACM Reference Format:

Nasir Asadov, Martin Roch-Neirey, and Vlad Coroama. 2024. Implementation
and benchmarking of a carbon-aware scheduling algorithm in a distributed
computing continuum. X, X, Article X (X 2024), 1 page. https://doi.org/
XXXXXXXXXXXXXX

1 INTRODUCTION

a

1.1 Motivation: Increasing energy and carbon footprint of
computing

a

1.2 Carbon-aware computing as possible solution

a

2 BACKGROUND: FLUIDOS PROJECT

3 A NOVEL CARBON-AWARE SPATIOTEMPORAL
SHIFTING ALGORITHM

a

3.1 Design

a
3.2 Implementation

a

3.2.1 Integration in a distributed computing continuum. a

3.2.2 Benchmarking using the parallel implementation in a simulator.
a

Authors’ Contact Information: Nasir Asadov, nasir.asadov@tu-berlin.de, Chair of Sus-
tainable Engineering (SEE), Berlin, Germany; Martin Roch-Neirey, Institute of artifi-
cial intelligence and complex systems (iCoSys), Fribourg, Switzerland, martin.roch-
neirey@hefr.ch; Vlad Coroama, coroama@tu-berlin.de, Chair of Sustainable Engineer-
ing (SEE), Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/X-ARTX

https://doi.org/XXXXXXX.XXXXXXX

4 METHOD

a

4.1 Benchmarking baselines: Perfect, NP-hard solution
and vanilla, non-carbon-aware scheduling

4.2 Simulated parameters

4.3 Monte-Carlo simulations

5 RESULTS

6 DISCUSSION AND LIMITATIONS

7 CONCLUSIONS

a

REFERENCES

Received X June 2024; revised X June 2024; accepted X June 2024

, Vol. X, No. X, Article X. Publication date: X 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

References

[1]

[2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]

[11]

[12]

[13]

[14]

Flexible, scalable and secUre decentrallzeD Operating System | FLUIDOS Project
| Fact Sheet | HORIZON. en. URL: https://cordis.europa.eu/proje
ct/id/101070473 (visited on 06/11/2024).

FLUIDOS project. en-US. Sept. 2021. URL: https://www. fluidos.eu/
(visited on 06/11/2024).

Kubernetes. en. URL: https://kubernetes.io/ (visited on 06/11/2024).

ligotech/liqo: Enable dynamic and seamless Kubernetes multi-cluster topologies.
URL: https://github.com/liqotech/liqo?tab=readme-ov-file
(visited on 06/06/2024).

Sébastien Rumley Nasir Asadov Vlad Coroama. Context of the bachelor thesis.
2024.

FLUIDOS contributors. REAR protocol. 2024. URL: https://github.com
/fluidos-project/REAR (visited on 07/25/2024).

FLUIDOS contributors. FLUIDOS model-based meta-orchestrator GitHub repos-
itory. 2024. URL: https://github.com/fluidos-project/fluidos-
modelbased-metaorchestrator (visited on 07/25/2024).

IEA. Electricity 2024: Analysis and forecast to 2026. Tech. rep. |IEA, 2024.

Ralph Hintemann and Simon Hinterholzer. “Energy consumption of data centers
worldwide”. en. In: 2019.

Moore, G. E. "Cramming more components onto integrated circuits.” In: Elec-
tronics, 38(8). (1965).

Ana Radovanovic et al. “Carbon-Aware Computing for Datacenters”. en. In: (June
2021). arXiv:2106.11750 [cs, eess]. URL: http://arxiv.org/abs/2106.1
1750 (visited on 07/27/2024).

Poonam Singh, Maitreyee Dutta, and Naveen Aggarwal. “Bi-objective HWDO
Algorithm for Optimizing Makespan and Reliability of Workflow Scheduling in
Cloud Systems”. en. In: 2017 14th IEEE India Council International Conference
(INDICON). Roorkee: IEEE, Dec. 2017, pp. 1-9. ISBN: 978-1-5386-4318-1. DOI:
10.1109/INDICON.2017.8487600. URL: https://ieeexplore.ieee
.org/document/8487600/ (visited on 07/17/2024).

Xianggiang Gao, Rongke Liu, and Aryan Kaushik. “Hierarchical Multi-Agent
Optimization for Resource Allocation in Cloud Computing”. en. In: /EEE Transac-
tions on Parallel and Distributed Systems 32.3 (Mar. 2021), pp. 692-707. ISSN:
1045-9219, 1558-2183, 2161-9883. DOI: 10.1109/TPDS.2020.3030920.
URL: https://ieeexplore.ieee.org/document/9224163/ (visited
on 07/16/2024).

WP3 authors. FLUIDOS Node - Testbed (KIND). 2024. URL: https://gith
ub.com/fluidos-project/node/tree/main/testbed/kind (visited
on 07/11/2024).

51

https://cordis.europa.eu/project/id/101070473
https://cordis.europa.eu/project/id/101070473
https://www.fluidos.eu/
https://kubernetes.io/
https://github.com/liqotech/liqo?tab=readme-ov-file
https://github.com/fluidos-project/REAR
https://github.com/fluidos-project/REAR
https://github.com/fluidos-project/fluidos-modelbased-metaorchestrator
https://github.com/fluidos-project/fluidos-modelbased-metaorchestrator
http://arxiv.org/abs/2106.11750
http://arxiv.org/abs/2106.11750
https://doi.org/10.1109/INDICON.2017.8487600
https://ieeexplore.ieee.org/document/8487600/
https://ieeexplore.ieee.org/document/8487600/
https://doi.org/10.1109/TPDS.2020.3030920
https://ieeexplore.ieee.org/document/9224163/
https://github.com/fluidos-project/node/tree/main/testbed/kind
https://github.com/fluidos-project/node/tree/main/testbed/kind

References

[15]

[16]

[17]

[18]

[19]

52

The Kubernetes Authors. kind. 2024. URL: https://kind.sigs.k8s.1i0/
(visited on 07/11/2024).

Martin Roch-Neirey and Stefano Braghin. Carbon-Aware scheduler 41 Pull Re-
quest - FLUIDOS Model-Based Meta-Orchestrator GitHub repository. 2024.
URL: https://github.com/fluidos-project/fluidos-modelbas
ed-metaorchestrator/pull/41 (visited on 08/01/2024).

Electricity Maps ApS. Electricity Maps. 2024. URL: https://www.electri
citymaps.com/ (visited on 07/29/2024).

FLUIDOS contributors. FLUIDOS REAR data models. 2024. URL: https:
//github.com/fluidos-project/REAR-data-models (visited on
07/29/2024).

Martin Roch-Neirey. FLUIDOS Scheduling Algorithms Simulator GitHub Reposi-
toy. 2024. URL: https://github.com/fluidos-project/schedulin
g-algorithms-simulator (visited on 08/02/2024).

https://kind.sigs.k8s.io/
https://github.com/fluidos-project/fluidos-modelbased-metaorchestrator/pull/41
https://github.com/fluidos-project/fluidos-modelbased-metaorchestrator/pull/41
https://www.electricitymaps.com/
https://www.electricitymaps.com/
https://github.com/fluidos-project/REAR-data-models
https://github.com/fluidos-project/REAR-data-models
https://github.com/fluidos-project/scheduling-algorithms-simulator
https://github.com/fluidos-project/scheduling-algorithms-simulator

Glossary

APl An Application Programming Interface is a set of protocols, tools, and definitions
that allow different software applications to communicate with each other, enabling
them to request and exchange data and services. 3

Internet-of-Things Network of interconnected physical devices embedded with sensors,
software, and other technologies to collect and exchange data, enabling them to
communicate and interact with each other and external systems over the internet.
1

KinD Kubernetes in Docker is a tool for running local Kubernetes clusters using Docker
container nodes, primarily designed for testing Kubernetes environments. 14

Kubernetes Open-source orchestrator used to deploy scalable workloads as containers.
1

LIQO Open-source platform enabling dynamic and seamless multi-cluster Kubernetes
orchestration and resource sharing across different environments. 1

Oriented-Object Programming Programming paradigm that organises software de-
sign around data, or objects, rather than functions and logic, emphasising the
concepts of classes and objects, inheritance, encapsulation, and polymorphism.
41

53

	Version history
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Equations
	Introduction
	Context
	Objectives
	Structure and information about this report

	Analysis
	The FLUIDOS project
	Reference architecture

	Carbon-aware scheduling algorithm
	Motivation
	Design of the algorithm

	Implementation
	FLUIDOS remote workload scheduling demonstration
	Development of the algorithm within the FLUIDOS architecture
	Demonstration of the MBMO and the carbon-aware scheduler
	Development of an algorithms simulator
	Other work done

	Conclusion
	Global overview
	Next steps
	Personal feedback
	HES-SO legal information

	Actors and work packages of the FLUIDOS project
	Draft of a research paper
	References
	Glossary

